These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26320790)

  • 1. Quantitative aspects of electrolysis in electromembrane extractions of acidic and basic analytes.
    Šlampová A; Kubáň P; Boček P
    Anal Chim Acta; 2015 Aug; 887():92-100. PubMed ID: 26320790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additional considerations on electrolysis in electromembrane extraction.
    Šlampová A; Kubáň P; Boček P
    J Chromatogr A; 2016 Jan; 1429():364-8. PubMed ID: 26709026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of electrolysis on operational solutions in electromembrane extraction: The role of acceptor solution.
    Kubáň P; Boček P
    J Chromatogr A; 2015 Jun; 1398():11-9. PubMed ID: 25937132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-electromembrane extraction using multiple free liquid membranes and acceptor solutions - Towards selective extractions of analytes based on their acid-base strength.
    Kubáň P; Seip KF; Gjelstad A; Pedersen-Bjergaard S
    Anal Chim Acta; 2016 Nov; 943():64-73. PubMed ID: 27769378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous micro-electromembrane extractions of anions and cations using multiple free liquid membranes and acceptor solutions.
    Kubáň P; Boček P
    Anal Chim Acta; 2016 Feb; 908():113-20. PubMed ID: 26826693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of selected operational parameters on efficacy and selectivity of electromembrane extraction. Chlorophenols as model analytes.
    Slampová A; Kubáň P; Boček P
    Electrophoresis; 2014 Sep; 35(17):2429-37. PubMed ID: 24789309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-automated set-up for exhaustive micro-electromembrane extractions of basic drugs from biological fluids.
    Dvořák M; Seip KF; Pedersen-Bjergaard S; Kubáň P
    Anal Chim Acta; 2018 Apr; 1005():34-42. PubMed ID: 29389317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Analysis of Free Aqueous and Organic Operational Solutions as a Tool for Understanding Fundamental Principles of Electromembrane Extraction.
    Šlampová A; Kubáň P
    Anal Chem; 2017 Dec; 89(23):12960-12967. PubMed ID: 29083873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-electromembrane extraction across free liquid membranes. Extractions of basic drugs from undiluted biological samples.
    Kubáň P; Boček P
    J Chromatogr A; 2014 Apr; 1337():32-9. PubMed ID: 24636568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive study of buffer systems and local pH effects in electromembrane extraction.
    Restan MS; Jensen H; Shen X; Huang C; Martinsen ØG; Kubáň P; Gjelstad A; Pedersen-Bjergaard S
    Anal Chim Acta; 2017 Sep; 984():116-123. PubMed ID: 28843554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic aspects of hollow fiber liquid-phase microextraction and electromembrane extraction.
    Gjelstad A; Jensen H; Rasmussen KE; Pedersen-Bjergaard S
    Anal Chim Acta; 2012 Sep; 742():10-6. PubMed ID: 22884201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromembrane extraction of polar basic drugs from plasma with pure bis(2-ethylhexyl) phosphite as supported liquid membrane.
    Huang C; Seip KF; Gjelstad A; Pedersen-Bjergaard S
    Anal Chim Acta; 2016 Aug; 934():80-7. PubMed ID: 27506347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of Electromembrane Extraction and Liquid-Phase Microextraction in a Single Step: Simultaneous Group Separation of Acidic and Basic Drugs.
    Huang C; Seip KF; Gjelstad A; Shen X; Pedersen-Bjergaard S
    Anal Chem; 2015 Jul; 87(13):6951-7. PubMed ID: 26039105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volatile free liquid membranes for electromembrane extraction.
    Šlampová A; Kubáň P
    Anal Chim Acta; 2021 Oct; 1182():338959. PubMed ID: 34602190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro-electromembrane extraction across free liquid membranes. Instrumentation and basic principles.
    Kubáň P; Boček P
    J Chromatogr A; 2014 Jun; 1346():25-33. PubMed ID: 24792701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromembrane extraction using two separate cells: A new design for simultaneous extraction of acidic and basic compounds.
    Nojavan S; Asadi S
    Electrophoresis; 2016 Feb; 37(4):587-94. PubMed ID: 26593286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromembrane extraction using stabilized constant d.c. electric current--a simple tool for improvement of extraction performance.
    Slampová A; Kubáň P; Boček P
    J Chromatogr A; 2012 Apr; 1234():32-7. PubMed ID: 22154457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-electromembrane extraction.
    Payán MD; Li B; Petersen NJ; Jensen H; Hansen SH; Pedersen-Bjergaard S
    Anal Chim Acta; 2013 Jun; 785():60-6. PubMed ID: 23764444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromembrane extraction of substances with weakly basic properties: a fundamental study with benzodiazepines.
    Vårdal L; Øiestad EL; Gjelstad A; Pedersen-Bjergaard S
    Bioanalysis; 2018 May; 10(10):769-781. PubMed ID: 29771135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of a macrocyclic compound, bambus[6]uril, in tailor-made liquid membranes for highly selective electromembrane extractions of inorganic anions.
    Šlampová A; Šindelář V; Kubáň P
    Anal Chim Acta; 2017 Jan; 950():49-56. PubMed ID: 27916129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.