These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26320818)

  • 1. Distraction osteogenesis device to estimate the axial stiffness of the callus in Vivo.
    Mora-Macías J; Reina-Romo E; Domínguez J
    Med Eng Phys; 2015 Oct; 37(10):969-78. PubMed ID: 26320818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo Mechanical Characterization of the Distraction Callus During Bone Consolidation.
    Mora-Macías J; Reina-Romo E; López-Pliego M; Giráldez-Sánchez MA; Domínguez J
    Ann Biomed Eng; 2015 Nov; 43(11):2663-74. PubMed ID: 25956927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new device to quantify regenerate torsional stiffness in distraction osteogenesis.
    Windhagen H; Bail H; Schmeling A; Kolbeck S; Weiler A; Raschke M
    J Biomech; 1999 Aug; 32(8):857-60. PubMed ID: 10433428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stiffness of callus tissue during distraction osteogenesis.
    Floerkemeier T; Thorey F; Hurschler C; Wellmann M; Witte F; Windhagen H
    Orthop Traumatol Surg Res; 2010 Apr; 96(2):155-60. PubMed ID: 20417914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramembranous bone formation after callus distraction is augmented by increasing axial compressive strain.
    Schuelke J; Meyers N; Reitmaier S; Klose S; Ignatius A; Claes L
    PLoS One; 2018; 13(4):e0195466. PubMed ID: 29624608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3D computational simulation of fracture callus formation: influence of the stiffness of the external fixator.
    Gómez-Benito MJ; García-Aznar JM; Kuiper JH; Doblaré M
    J Biomech Eng; 2006 Jun; 128(3):290-9. PubMed ID: 16706578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possible problems of moulding the regenerate in mandibular distraction osteogenesis -- experimental aspects in a canine model.
    Kunz C; Adolphs N; Buescher P; Hammer B; Rahn B
    J Craniomaxillofac Surg; 2005 Dec; 33(6):377-85. PubMed ID: 16253512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of various types of stiffness as predictors of the load-bearing capacity of callus tissue.
    Floerkemeier T; Hurschler C; Witte F; Wellmann M; Thorey F; Vogt U; Windhagen H
    J Bone Joint Surg Br; 2005 Dec; 87(12):1694-9. PubMed ID: 16326889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo study of human mandibular distraction osteogenesis. Part II: Determination of callus mechanical properties.
    Bonnet AS; Dubois G; Lipinski P; Schouman T
    Acta Bioeng Biomech; 2013; 15(1):11-8. PubMed ID: 23957392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of methods for assigning the material properties of the distraction callus in computational models.
    Mora-Macías J; Giráldez-Sánchez MÁ; López M; Domínguez J; Reina-Romo ME
    Int J Numer Method Biomed Eng; 2019 Sep; 35(9):e3227. PubMed ID: 31197959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Assessment of bone healing during callus distraction by an automatic torsional stiffness metering system].
    Thorey F; Windhagen H; Linnenberg D; Nölle O; Maciejewski O; Spies C
    Biomed Tech (Berl); 2000 Dec; 45(12):343-8. PubMed ID: 11194640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model of the distraction callus tissue behavior during bone transport based in experiments in vivo.
    Mora-Macías J; Reina-Romo E; Domínguez J
    J Mech Behav Biomed Mater; 2016 Aug; 61():419-430. PubMed ID: 27111628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating lateral distraction osteogenesis.
    Niemeyer F; Claes L; Ignatius A; Meyers N; Simon U
    PLoS One; 2018; 13(3):e0194500. PubMed ID: 29543908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of callus tissue behavior during stable distraction osteogenesis.
    Meyers N; Schülke J; Ignatius A; Claes L
    J Mech Behav Biomed Mater; 2018 Sep; 85():12-19. PubMed ID: 29803766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-intensity pulsed ultrasound does not enhance distraction callus in a rabbit model.
    Taylor KF; Rafiee B; Tis JE; Inoue N
    Clin Orthop Relat Res; 2007 Jun; 459():237-45. PubMed ID: 17545764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mandibular distraction osteogenesis with newly designed electromechanical distractor.
    Aykan A; Ugurlutan R; Zor F; Ozturk S
    J Craniofac Surg; 2014 Jul; 25(4):1519-23. PubMed ID: 24914755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mode of interfragmentary movement affects bone formation and revascularization after callus distraction.
    Claes L; Meyers N; Schülke J; Reitmaier S; Klose S; Ignatius A
    PLoS One; 2018; 13(8):e0202702. PubMed ID: 30138362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel approach to estimate distraction forces in distraction osteogenesis and application in the human lower leg.
    Bachmeier AT; Euler E; Bader R; Böcker W; Thaller PH
    J Mech Behav Biomed Mater; 2022 Apr; 128():105133. PubMed ID: 35217291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of a manual and motorized stiffness meter to quantify bone regeneration in distraction osteogenesis.
    Thorey F; Floerkemeier T; Wellmann M; Windhagen H
    Technol Health Care; 2009; 17(5-6):369-75. PubMed ID: 20051616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Evaluation of potential damage to the regenerate during callus molding after mandibular distraction osteogenesis. Experimental study using an animal model].
    Kunz C; Adolphs N; Buescher P; Hammer B; Rahn B
    Mund Kiefer Gesichtschir; 2005 May; 9(3):169-76. PubMed ID: 15856346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.