These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 26321273)
1. Coronary and muscle blood flow during physical exercise in humans; heterogenic alliance. Zoladz JA; Majerczak J; Duda K; Chlopicki S Pharmacol Rep; 2015 Aug; 67(4):719-27. PubMed ID: 26321273 [TBL] [Abstract][Full Text] [Related]
2. Limitations to systemic and locomotor limb muscle oxygen delivery and uptake during maximal exercise in humans. Mortensen SP; Dawson EA; Yoshiga CC; Dalsgaard MK; Damsgaard R; Secher NH; González-Alonso J J Physiol; 2005 Jul; 566(Pt 1):273-85. PubMed ID: 15860533 [TBL] [Abstract][Full Text] [Related]
3. Diffuse correlation spectroscopy and frequency-domain near-infrared spectroscopy for measuring microvascular blood flow in dynamically exercising human muscles. Quaresima V; Farzam P; Anderson P; Farzam PY; Wiese D; Carp SA; Ferrari M; Franceschini MA J Appl Physiol (1985); 2019 Nov; 127(5):1328-1337. PubMed ID: 31513443 [TBL] [Abstract][Full Text] [Related]
4. Blood flow regulation and oxygen uptake during high-intensity forearm exercise. Nyberg SK; Berg OK; Helgerud J; Wang E J Appl Physiol (1985); 2017 Apr; 122(4):907-917. PubMed ID: 28057820 [TBL] [Abstract][Full Text] [Related]
5. One-legged endurance training: leg blood flow and oxygen extraction during cycling exercise. Rud B; Foss O; Krustrup P; Secher NH; Hallén J Acta Physiol (Oxf); 2012 May; 205(1):177-85. PubMed ID: 22059600 [TBL] [Abstract][Full Text] [Related]
6. Reliability of muscle blood flow and oxygen consumption response from exercise using near-infrared spectroscopy. Lucero AA; Addae G; Lawrence W; Neway B; Credeur DP; Faulkner J; Rowlands D; Stoner L Exp Physiol; 2018 Jan; 103(1):90-100. PubMed ID: 29034529 [TBL] [Abstract][Full Text] [Related]
7. Influence of blood flow occlusion on muscle oxygenation characteristics and the parameters of the power-duration relationship. Broxterman RM; Ade CJ; Craig JC; Wilcox SL; Schlup SJ; Barstow TJ J Appl Physiol (1985); 2015 Apr; 118(7):880-9. PubMed ID: 25663673 [TBL] [Abstract][Full Text] [Related]
8. Muscle blood-flow dynamics at exercise onset: do the limbs differ? Tschakovsky ME; Saunders NR; Webb KA; O'Donnell DE Med Sci Sports Exerc; 2006 Oct; 38(10):1811-8. PubMed ID: 17019304 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of muscle oxygen use, oxygen content, and blood flow during exercise. Kemp G J Appl Physiol (1985); 2005 Dec; 99(6):2463-8; author reply 2468-9. PubMed ID: 16288106 [No Abstract] [Full Text] [Related]
10. In vivo evidence of an age-related increase in ATP cost of contraction in the plantar flexor muscles. Layec G; Trinity JD; Hart CR; Kim SE; Groot HJ; Le Fur Y; Sorensen JR; Jeong EK; Richardson RS Clin Sci (Lond); 2014 Apr; 126(8):581-92. PubMed ID: 24224517 [TBL] [Abstract][Full Text] [Related]
12. Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP. González-Alonso J; Olsen DB; Saltin B Circ Res; 2002 Nov; 91(11):1046-55. PubMed ID: 12456491 [TBL] [Abstract][Full Text] [Related]
13. Ex vivo measures of muscle mitochondrial capacity reveal quantitative limits of oxygen delivery by the circulation during exercise. Boushel R; Saltin B Int J Biochem Cell Biol; 2013 Jan; 45(1):68-75. PubMed ID: 23032701 [TBL] [Abstract][Full Text] [Related]
14. Effects of ageing on muscle O2 utilization and muscle oxygenation during the transition to moderate-intensity exercise. DeLorey DS; Paterson DH; Kowalchuk JM Appl Physiol Nutr Metab; 2007 Dec; 32(6):1251-62. PubMed ID: 18059603 [TBL] [Abstract][Full Text] [Related]