These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
563 related articles for article (PubMed ID: 26321425)
1. MDG-1, an Ophiopogon polysaccharide, regulate gut microbiota in high-fat diet-induced obese C57BL/6 mice. Shi LL; Li Y; Wang Y; Feng Y Int J Biol Macromol; 2015 Nov; 81():576-83. PubMed ID: 26321425 [TBL] [Abstract][Full Text] [Related]
2. [Effect of MDG-1, a polysaccharide from Ophiopogon japonicas, on diversity of lactobacillus in diet-induced obese mice]. Shi LL; Wang Y; Feng Y Zhongguo Zhong Yao Za Zhi; 2015 Feb; 40(4):716-21. PubMed ID: 26137696 [TBL] [Abstract][Full Text] [Related]
3. Fecal metabonomic study of a polysaccharide, MDG-1 from Ophiopogon japonicus on diabetic mice based on gas chromatography/time-of-flight mass spectrometry (GC TOF/MS). Zhu Y; Cong W; Shen L; Wei H; Wang Y; Wang L; Ruan K; Wu F; Feng Y Mol Biosyst; 2014 Feb; 10(2):304-12. PubMed ID: 24292023 [TBL] [Abstract][Full Text] [Related]
4. MDG, an Ophiopogon japonicus polysaccharide, inhibits non-alcoholic fatty liver disease by regulating the abundance of Akkermansia muciniphila. Zhang L; Wang Y; Wu F; Wang X; Feng Y; Wang Y Int J Biol Macromol; 2022 Jan; 196():23-34. PubMed ID: 34920070 [TBL] [Abstract][Full Text] [Related]
5. MDG-1, an Ophiopogon polysaccharide, restrains process of non-alcoholic fatty liver disease via modulating the gut-liver axis. Wang X; Shi L; Wang X; Feng Y; Wang Y Int J Biol Macromol; 2019 Dec; 141():1013-1021. PubMed ID: 31491513 [TBL] [Abstract][Full Text] [Related]
6. MDG-1, an Ophiopogon polysaccharide, alleviates hyperlipidemia in mice based on metabolic profile of bile acids. Shi L; Wang J; Wang Y; Feng Y Carbohydr Polym; 2016 Oct; 150():74-81. PubMed ID: 27312615 [TBL] [Abstract][Full Text] [Related]
7. MDG-1, a polysaccharide from Ophiopogon japonicus, prevents high fat diet-induced obesity and increases energy expenditure in mice. Wang Y; Zhu Y; Ruan K; Wei H; Feng Y Carbohydr Polym; 2014 Dec; 114():183-189. PubMed ID: 25263880 [TBL] [Abstract][Full Text] [Related]
8. Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Murphy EF; Cotter PD; Hogan A; O'Sullivan O; Joyce A; Fouhy F; Clarke SF; Marques TM; O'Toole PW; Stanton C; Quigley EM; Daly C; Ross PR; O'Doherty RM; Shanahan F Gut; 2013 Feb; 62(2):220-6. PubMed ID: 22345653 [TBL] [Abstract][Full Text] [Related]
9. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity. Hwang I; Park YJ; Kim YR; Kim YN; Ka S; Lee HY; Seong JK; Seok YJ; Kim JB FASEB J; 2015 Jun; 29(6):2397-411. PubMed ID: 25713030 [TBL] [Abstract][Full Text] [Related]
10. Effect of mushroom polysaccharides from Pleurotus eryngii on obesity and gut microbiota in mice fed a high-fat diet. Nakahara D; Nan C; Mori K; Hanayama M; Kikuchi H; Hirai S; Egashira Y Eur J Nutr; 2020 Oct; 59(7):3231-3244. PubMed ID: 31865422 [TBL] [Abstract][Full Text] [Related]
11. Ophiopogonin D alleviates high-fat diet-induced metabolic syndrome and changes the structure of gut microbiota in mice. Chen S; Li X; Liu L; Liu C; Han X FASEB J; 2018 Mar; 32(3):1139-1153. PubMed ID: 29084766 [TBL] [Abstract][Full Text] [Related]
12. Restoration of cefixime-induced gut microbiota changes by Lactobacillus cocktails and fructooligosaccharides in a mouse model. Shi Y; Zhai Q; Li D; Mao B; Liu X; Zhao J; Zhang H; Chen W Microbiol Res; 2017 Jul; 200():14-24. PubMed ID: 28527760 [TBL] [Abstract][Full Text] [Related]
13. Gut microbiota-mediated xanthine metabolism is associated with resistance to high-fat diet-induced obesity. Wei B; Wang S; Wang Y; Ke S; Jin W; Chen J; Zhang H; Sun J; Henning SM; Wang J; Wang H J Nutr Biochem; 2021 Feb; 88():108533. PubMed ID: 33250443 [TBL] [Abstract][Full Text] [Related]
14. Nuciferine modulates the gut microbiota and prevents obesity in high-fat diet-fed rats. Wang Y; Yao W; Li B; Qian S; Wei B; Gong S; Wang J; Liu M; Wei M Exp Mol Med; 2020 Dec; 52(12):1959-1975. PubMed ID: 33262480 [TBL] [Abstract][Full Text] [Related]
15. Dietary Uncoupling of Gut Microbiota and Energy Harvesting from Obesity and Glucose Tolerance in Mice. Dalby MJ; Ross AW; Walker AW; Morgan PJ Cell Rep; 2017 Nov; 21(6):1521-1533. PubMed ID: 29117558 [TBL] [Abstract][Full Text] [Related]
16. Sulfated Polysaccharide from Sea Cucumber and its Depolymerized Derivative Prevent Obesity in Association with Modification of Gut Microbiota in High-Fat Diet-Fed Mice. Zhu Z; Zhu B; Sun Y; Ai C; Wang L; Wen C; Yang J; Song S; Liu X Mol Nutr Food Res; 2018 Dec; 62(23):e1800446. PubMed ID: 30267558 [TBL] [Abstract][Full Text] [Related]
18. Polysaccharides from Platycodon grandiflorus attenuates high-fat diet induced obesity in mice through targeting gut microbiota. Ke W; Flay KJ; Huang X; Hu X; Chen F; Li C; Yang DA Biomed Pharmacother; 2023 Oct; 166():115318. PubMed ID: 37572640 [TBL] [Abstract][Full Text] [Related]
19. Hypoglycemic effects of MDG-1, a polysaccharide derived from Ophiopogon japonicas, in the ob/ob mouse model of type 2 diabetes mellitus. Xu J; Wang Y; Xu DS; Ruan KF; Feng Y; Wang S Int J Biol Macromol; 2011 Nov; 49(4):657-62. PubMed ID: 21756932 [TBL] [Abstract][Full Text] [Related]
20. Metabolic and Gut Microbial Characterization of Obesity-Prone Mice under a High-Fat Diet. Gu Y; Liu C; Zheng N; Jia W; Zhang W; Li H J Proteome Res; 2019 Apr; 18(4):1703-1714. PubMed ID: 30793608 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]