These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 26321943)

  • 1. Toward Building Hybrid Biological/in silico Neural Networks for Motor Neuroprosthetic Control.
    Kocaturk M; Gulcur HO; Canbeyli R
    Front Neurorobot; 2015; 9():8. PubMed ID: 26321943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting.
    Werner T; Vianello E; Bichler O; Garbin D; Cattaert D; Yvert B; De Salvo B; Perniola L
    Front Neurosci; 2016; 10():474. PubMed ID: 27857680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-inspired spiking neural network for nonlinear systems control.
    Pérez J; Cabrera JA; Castillo JJ; Velasco JM
    Neural Netw; 2018 Aug; 104():15-25. PubMed ID: 29702424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
    Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV
    Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supervised Learning in SNN via Reward-Modulated Spike-Timing-Dependent Plasticity for a Target Reaching Vehicle.
    Bing Z; Baumann I; Jiang Z; Huang K; Cai C; Knoll A
    Front Neurorobot; 2019; 13():18. PubMed ID: 31130854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.
    Xu T; Xiao N; Zhai X; Kwan Chan P; Tin C
    J Neural Eng; 2018 Feb; 15(1):016021. PubMed ID: 29115280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder.
    Boi F; Moraitis T; De Feo V; Diotalevi F; Bartolozzi C; Indiveri G; Vato A
    Front Neurosci; 2016; 10():563. PubMed ID: 28018162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation.
    Zbrzeski A; Bornat Y; Hillen B; Siu R; Abbas J; Jung R; Renaud S
    Front Neurosci; 2016; 10():275. PubMed ID: 27378844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using a Low-Power Spiking Continuous Time Neuron (SCTN) for Sound Signal Processing.
    Bensimon M; Greenberg S; Haiut M
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33557214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A spiking neural network with continuous local learning for robust online brain machine interface.
    Taeckens EA; Shah S
    J Neural Eng; 2024 Jan; 20(6):. PubMed ID: 38173230
    [No Abstract]   [Full Text] [Related]  

  • 11. A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs.
    Jimenez-Fernandez A; Jimenez-Moreno G; Linares-Barranco A; Dominguez-Morales MJ; Paz-Vicente R; Civit-Balcells A
    Sensors (Basel); 2012; 12(4):3831-3856. PubMed ID: 22666004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new full closed-loop brain-machine interface approach based on neural activity: A study based on modeling and experimental studies.
    Amiri M; Nazari S; Jafari AH; Makkiabadi B
    Heliyon; 2023 Mar; 9(3):e13766. PubMed ID: 36851970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential mapping spiking neural network for sensor-based robot control.
    Zahra O; Tolu S; Navarro-Alarcon D
    Bioinspir Biomim; 2021 Apr; 16(3):. PubMed ID: 33706302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analog-digital simulations of full conductance-based networks of spiking neurons with spike timing dependent plasticity.
    Zou Q; Bornat Y; Saïghi S; Tomas J; Renaud S; Destexhe A
    Network; 2006 Sep; 17(3):211-33. PubMed ID: 17162612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.
    Jimenez-Romero C; Johnson J
    Neural Comput Appl; 2017; 28(Suppl 1):755-764. PubMed ID: 29213189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback.
    Legenstein R; Pecevski D; Maass W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000180. PubMed ID: 18846203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule.
    Hao Y; Huang X; Dong M; Xu B
    Neural Netw; 2020 Jan; 121():387-395. PubMed ID: 31593843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-based test-bed for clinical assessment of hand/wrist feed-forward neuroprosthetic controllers using artificial neural networks.
    Luján JL; Crago PE
    Med Biol Eng Comput; 2004 Nov; 42(6):754-61. PubMed ID: 15587466
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.