These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 26322861)

  • 1. Surface Modification Approach to TiO2 Nanofluids with High Particle Concentration, Low Viscosity, and Electrochemical Activity.
    Sen S; Govindarajan V; Pelliccione CJ; Wang J; Miller DJ; Timofeeva EV
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20538-47. PubMed ID: 26322861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluids.
    Timofeeva EV; Smith DS; Yu W; France DM; Singh D; Routbort JL
    Nanotechnology; 2010 May; 21(21):215703. PubMed ID: 20431197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of nanoparticle on rheological properties of surfactant-based nanofluid for effective carbon utilization: capturing and storage prospects.
    Kumar RS; Goswami R; Chaturvedi KR; Sharma T
    Environ Sci Pollut Res Int; 2021 Oct; 28(38):53578-53593. PubMed ID: 34036498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on Evaluation of the Thermal Conductivity of Alumina Titania Hybrid Suspension Nanofluids for Enhanced Heat Transfer Applications.
    Bhattad A; Rao BN; Atgur V; Banapurmath NR; Sajjan AM; Vadlamudi C; Krishnappa S; Yunus Khan TM; Ayachit NH
    ACS Omega; 2023 Jul; 8(27):24176-24184. PubMed ID: 37457476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-dependent effect of percolation and Brownian motion on the thermal conductivity of TiO2-ethanol nanofluids.
    Li CC; Hau NY; Wang Y; Soh AK; Feng SP
    Phys Chem Chem Phys; 2016 Jun; 18(22):15363-8. PubMed ID: 27212639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced thermal conductivity and viscosity of nanodiamond-nickel nanocomposite nanofluids.
    Sundar LS; Singh MK; Ramana EV; Singh B; Grácio J; Sousa AC
    Sci Rep; 2014 Feb; 4():4039. PubMed ID: 24509508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory.
    Timofeeva EV; Gavrilov AN; McCloskey JM; Tolmachev YV; Sprunt S; Lopatina LM; Selinger JV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061203. PubMed ID: 18233838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Thermal Conductivity of Copper Nanofluids: The Effect of Filler Geometry.
    Bhanushali S; Jason NN; Ghosh P; Ganesh A; Simon GP; Cheng W
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18925-18935. PubMed ID: 28471162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscosity of nanofluids containing anisotropic particles: A critical review and a comprehensive model.
    Ye X; Kandlikar SG; Li C
    Eur Phys J E Soft Matter; 2019 Dec; 42(12):159. PubMed ID: 31863297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport properties of alumina nanofluids.
    Wong KF; Kurma T
    Nanotechnology; 2008 Aug; 19(34):345702. PubMed ID: 21730657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review on thermal properties of nanofluids: Recent developments.
    Angayarkanni SA; Philip J
    Adv Colloid Interface Sci; 2015 Nov; 225():146-76. PubMed ID: 26391519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Performance of Hybrid-Inspired Coolant for Radiator Application.
    Benedict F; Kumar A; Kadirgama K; Mohammed HA; Ramasamy D; Samykano M; Saidur R
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32498258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic liquid-based stable nanofluids containing gold nanoparticles.
    Wang B; Wang X; Lou W; Hao J
    J Colloid Interface Sci; 2011 Oct; 362(1):5-14. PubMed ID: 21723564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal properties of nanofluids.
    Philip J; Shima PD
    Adv Colloid Interface Sci; 2012 Nov; 183-184():30-45. PubMed ID: 22921845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermophysical properties of nanofluids.
    Rudyak VY; Minakov AV
    Eur Phys J E Soft Matter; 2018 Jan; 41(1):15. PubMed ID: 29380078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Investigation of Rheological Properties and Thermal Conductivity of SiO
    Várady ZI; Ba TL; Parditka B; Erdélyi Z; Hernadi K; Karacs G; Gróf G; Szilágyi IM
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of electrokinetic properties of nanofluids.
    Murshed SM; Leong KC; Yang C
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5966-71. PubMed ID: 19198333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity.
    Zhu D; Wang L; Yu W; Xie H
    Sci Rep; 2018 Mar; 8(1):5282. PubMed ID: 29588467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on preparation, stability, thermal conductivity, and viscosity of silver nanoparticles-decorated three-dimensional graphene-like porous carbon hybrid nanofluids.
    Jin C; Wu Q; Zhang H; Yang G; Yuan X; Fu H
    Nanotechnology; 2021 Mar; 32(24):. PubMed ID: 33691293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wetting behavior of multi-walled carbon nanotube nanofluids.
    Karthikeyan A; Coulombe S; Kietzig AM
    Nanotechnology; 2017 Mar; 28(10):105706. PubMed ID: 28106004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.