These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 26323057)

  • 1. A Combined Experimental and Numerical Modeling Study of the Deformation and Rupture of Axisymmetric Liquid Bridges under Coaxial Stretching.
    Zhuang J; Ju YS
    Langmuir; 2015 Sep; 31(37):10173-82. PubMed ID: 26323057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of axisymmetric liquid bridges through vibration-induced pressure fields.
    Haynes M; Vega EJ; Herrada MA; Benilov ES; Montanero JM
    J Colloid Interface Sci; 2018 Mar; 513():409-417. PubMed ID: 29174647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of an axisymmetric liquid bridge close to the minimum-volume stability limit.
    Vega EJ; Montanero JM; Herrada MA; Ferrera C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013015. PubMed ID: 25122377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct numerical simulation of gas-solid-liquid flows with capillary effects: An application to liquid bridge forces between spherical particles.
    Sun X; Sakai M
    Phys Rev E; 2016 Dec; 94(6-1):063301. PubMed ID: 28085306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of soluble surfactants on the deformation and breakup of stretching liquid bridges.
    Liao YC; Subramani HJ; Franses EI; Basaran OA
    Langmuir; 2004 Nov; 20(23):9926-30. PubMed ID: 15518476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rupture process of liquid bridges: The effects of thermal fluctuations.
    Zhao J; Zhou N; Zhang K; Chen S; Liu Y; Wang Y
    Phys Rev E; 2020 Aug; 102(2-1):023116. PubMed ID: 32942457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation of liquid bridge rupture: application to lung physiology.
    Alencar AM; Wolfe E; Buldyrev SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026311. PubMed ID: 17025543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capillary liquid bridges in atomic force microscopy: formation, rupture, and hysteresis.
    Men Y; Zhang X; Wang W
    J Chem Phys; 2009 Nov; 131(18):184702. PubMed ID: 19916618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rupture kinetics of liquid bridges during a pulling process: a kinetic density functional theory study.
    Men Y; Zhang X; Wang W
    J Chem Phys; 2011 Mar; 134(12):124704. PubMed ID: 21456692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of viscous liquid bridges inside microchannels subject to external oscillatory flow.
    Ahmadlouydarab M; Azaiez J; Chen Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023002. PubMed ID: 25768592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axisymmetric multiphase lattice Boltzmann method.
    Srivastava S; Perlekar P; Boonkkamp JH; Verma N; Toschi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013309. PubMed ID: 23944585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface.
    Briones AM; Ervin JS; Putnam SA; Byrd LW; Gschwender L
    Langmuir; 2010 Aug; 26(16):13272-86. PubMed ID: 20695569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impinging laminar jets at moderate Reynolds numbers and separation distances.
    Bergthorson JM; Sone K; Mattner TW; Dimotakis PE; Goodwin DG; Meiron DI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066307. PubMed ID: 16486059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical conductance study of theta-liquid bridges.
    Evgenidis SP; Kostoglou M; Karapantsios TD
    J Colloid Interface Sci; 2006 Oct; 302(2):597-604. PubMed ID: 16854428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature effects on capillary instabilities in a thin nematic liquid crystalline fiber embedded in a viscous matrix.
    Cheong AG; Rey AD
    Eur Phys J E Soft Matter; 2002 Oct; 9(2):171-93. PubMed ID: 15015115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smoothed particle hydrodynamics simulation of a laser pulse impact onto a liquid metal droplet.
    Koukouvinis P; Kyriazis N; Gavaises M
    PLoS One; 2018; 13(9):e0204125. PubMed ID: 30252872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid-bridge breakup in contact-drop dispensing: Liquid-bridge stability with a free contact line.
    Akbari A; Hill RJ; van de Ven TG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022404. PubMed ID: 26382413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of Growth and Breakup of Viscous Pendant Drops into Air.
    Zhang X
    J Colloid Interface Sci; 1999 Apr; 212(1):107-122. PubMed ID: 10072280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stretching liquid bridges with moving contact lines: comparison of liquid-transfer predictions and experiments.
    Huang CH; Carvalho MS; Kumar S
    Soft Matter; 2016 Sep; 12(36):7457-7469. PubMed ID: 27714294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.