These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 26323217)
1. Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Wu J; Du G; Chen J; Zhou J Sci Rep; 2015 Sep; 5():13477. PubMed ID: 26323217 [TBL] [Abstract][Full Text] [Related]
2. Fine-Tuning of the Fatty Acid Pathway by Synthetic Antisense RNA for Enhanced (2S)-Naringenin Production from l-Tyrosine in Escherichia coli. Wu J; Yu O; Du G; Zhou J; Chen J Appl Environ Microbiol; 2014 Dec; 80(23):7283-92. PubMed ID: 25239896 [TBL] [Abstract][Full Text] [Related]
3. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Leonard E; Lim KH; Saw PN; Koffas MA Appl Environ Microbiol; 2007 Jun; 73(12):3877-86. PubMed ID: 17468269 [TBL] [Abstract][Full Text] [Related]
4. Magnesium starvation improves production of malonyl-CoA-derived metabolites in Escherichia coli. Tokuyama K; Toya Y; Matsuda F; Cress BF; Koffas MAG; Shimizu H Metab Eng; 2019 Mar; 52():215-223. PubMed ID: 30529031 [TBL] [Abstract][Full Text] [Related]
5. Efficient biosynthesis of (2S)-pinocembrin from d-glucose by integrating engineering central metabolic pathways with a pH-shift control strategy. Wu J; Zhang X; Zhou J; Dong M Bioresour Technol; 2016 Oct; 218():999-1007. PubMed ID: 27450982 [TBL] [Abstract][Full Text] [Related]
6. Regulation of ATP levels in Escherichia coli using CRISPR interference for enhanced pinocembrin production. Tao S; Qian Y; Wang X; Cao W; Ma W; Chen K; Ouyang P Microb Cell Fact; 2018 Sep; 17(1):147. PubMed ID: 30227873 [TBL] [Abstract][Full Text] [Related]
7. Engineering a Novel Metabolic Pathway for Improving Cellular Malonyl-CoA Levels in Escherichia coli. Moteallehi-Ardakani MH; Asad S; Marashi SA; Moghaddasi A; Zarparvar P Mol Biotechnol; 2023 Sep; 65(9):1508-1517. PubMed ID: 36658293 [TBL] [Abstract][Full Text] [Related]
9. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Xu P; Ranganathan S; Fowler ZL; Maranas CD; Koffas MA Metab Eng; 2011 Sep; 13(5):578-87. PubMed ID: 21763447 [TBL] [Abstract][Full Text] [Related]
10. Rational modular design of metabolic network for efficient production of plant polyphenol pinosylvin. Wu J; Zhang X; Zhu Y; Tan Q; He J; Dong M Sci Rep; 2017 May; 7(1):1459. PubMed ID: 28469159 [TBL] [Abstract][Full Text] [Related]
11. Development of a growth coupled and multi-layered dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin biosynthesis in Escherichia coli. Zhou S; Yuan SF; Nair PH; Alper HS; Deng Y; Zhou J Metab Eng; 2021 Sep; 67():41-52. PubMed ID: 34052445 [TBL] [Abstract][Full Text] [Related]
12. Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster. Miyahisa I; Kaneko M; Funa N; Kawasaki H; Kojima H; Ohnishi Y; Horinouchi S Appl Microbiol Biotechnol; 2005 Sep; 68(4):498-504. PubMed ID: 15770480 [TBL] [Abstract][Full Text] [Related]
13. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. Rathnasingh C; Raj SM; Lee Y; Catherine C; Ashok S; Park S J Biotechnol; 2012 Feb; 157(4):633-40. PubMed ID: 21723339 [TBL] [Abstract][Full Text] [Related]
14. Combinatorial pathway engineering using type I-E CRISPR interference. Tarasava K; Liu R; Garst A; Gill RT Biotechnol Bioeng; 2018 Jul; 115(7):1878-1883. PubMed ID: 29537074 [TBL] [Abstract][Full Text] [Related]
15. Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Fowler ZL; Gikandi WW; Koffas MA Appl Environ Microbiol; 2009 Sep; 75(18):5831-9. PubMed ID: 19633125 [TBL] [Abstract][Full Text] [Related]
16. Easy regulation of metabolic flux in Escherichia coli using an endogenous type I-E CRISPR-Cas system. Chang Y; Su T; Qi Q; Liang Q Microb Cell Fact; 2016 Nov; 15(1):195. PubMed ID: 27842593 [TBL] [Abstract][Full Text] [Related]
17. Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria. Yang D; Kim WJ; Yoo SM; Choi JH; Ha SH; Lee MH; Lee SY Proc Natl Acad Sci U S A; 2018 Oct; 115(40):9835-9844. PubMed ID: 30232266 [TBL] [Abstract][Full Text] [Related]
18. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli. Kim SK; Seong W; Han GH; Lee DH; Lee SG Microb Cell Fact; 2017 Nov; 16(1):188. PubMed ID: 29100516 [TBL] [Abstract][Full Text] [Related]
19. Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli. Wu J; Zhou P; Zhang X; Dong M J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1083-1095. PubMed ID: 28324236 [TBL] [Abstract][Full Text] [Related]
20. A novel process for obtaining pinosylvin using combinatorial bioengineering in Escherichia coli. Liang JL; Guo LQ; Lin JF; He ZQ; Cai FJ; Chen JF World J Microbiol Biotechnol; 2016 Jun; 32(6):102. PubMed ID: 27116968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]