BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 26323271)

  • 1. Ice-Binding Protein Derived from Glaciozyma Can Improve the Viability of Cryopreserved Mammalian Cells.
    Kim HJ; Shim HE; Lee JH; Kang YC; Hur YB
    J Microbiol Biotechnol; 2015 Dec; 25(12):1989-96. PubMed ID: 26323271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the antifreeze protein from the arctic yeast Leucosporidium sp. AY30 on cryopreservation of the marine diatom Phaeodactylum tricornutum.
    Koh HY; Lee JH; Han SJ; Park H; Lee SG
    Appl Biochem Biotechnol; 2015 Jan; 175(2):677-86. PubMed ID: 25342270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryopreservative effects of the recombinant ice-binding protein from the arctic yeast Leucosporidium sp. on red blood cells.
    Lee SG; Koh HY; Lee JH; Kang SH; Kim HJ
    Appl Biochem Biotechnol; 2012 Jun; 167(4):824-34. PubMed ID: 22622645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Marine-Derived Ice-Binding Proteins on the Cryopreservation of Marine Microalgae.
    Kim HJ; Koo BW; Kim D; Seo YS; Nam YK
    Mar Drugs; 2017 Dec; 15(12):. PubMed ID: 29194380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The protective effect of Leucosporidium-derived ice-binding protein (LeIBP) on bovine oocytes and embryos during vitrification.
    Sun WS; Jang H; Kwon HJ; Kim KY; Ahn SB; Hwang S; Lee SG; Lee JH; Hwang IS; Lee JW
    Theriogenology; 2020 Jul; 151():137-143. PubMed ID: 32361180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of phase transition of ice binding protein from Arctic yeast (LeIBP) utilizing differential scanning calorimetry (DSC) and Raman spectroscopy.
    Lee S; Lee JH; Kim HW; Hong JW
    Cryobiology; 2018 Dec; 85():33-38. PubMed ID: 30296411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Leucosporidium-derived ice-binding protein (LeIBP) on bull semen cryopreservation.
    Jang H; Kwon HJ; Sun WS; Hwang S; Hwang IS; Kim S; Lee JH; Lee SG; Lee JW
    Vet Med Sci; 2020 Aug; 6(3):447-453. PubMed ID: 32323490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryopreservation of dermal fibroblasts and keratinocytes in hydroxyethyl starch-based cryoprotectants.
    Naaldijk Y; Johnson AA; Friedrich-Stöckigt A; Stolzing A
    BMC Biotechnol; 2016 Dec; 16(1):85. PubMed ID: 27903244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30.
    Park KS; Do H; Lee JH; Park SI; Kim Ej; Kim SJ; Kang SH; Kim HJ
    Cryobiology; 2012 Jun; 64(3):286-96. PubMed ID: 22426061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of antifreeze proteins on the vitrification of mouse oocytes: comparison of three different antifreeze proteins.
    Lee HH; Lee HJ; Kim HJ; Lee JH; Ko Y; Kim SM; Lee JR; Suh CS; Kim SH
    Hum Reprod; 2015 Sep; 30(9):2110-9. PubMed ID: 26202918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freezing-enhanced oxidation of iodide by hydrogen peroxide in the presence of antifreeze proteins from the Arctic yeast Leucosporidium sp.AY30.
    Kim B; Do H; Kim BM; Lee JH; Kim S; Kim EJ; Lee J; Cho SM; Kim K
    Environ Res; 2022 Sep; 212(Pt A):113233. PubMed ID: 35390302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibiting ice recrystallization and optimization of cell viability after cryopreservation.
    Chaytor JL; Tokarew JM; Wu LK; Leclère M; Tam RY; Capicciotti CJ; Guolla L; von Moos E; Findlay CS; Allan DS; Ben RN
    Glycobiology; 2012 Jan; 22(1):123-33. PubMed ID: 21852258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a novel serum-free freezing medium for mammalian cells using the silk protein sericin.
    Sasaki M; Kato Y; Yamada H; Terada S
    Biotechnol Appl Biochem; 2005 Oct; 42(Pt 2):183-8. PubMed ID: 15943583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of Intracellular Ice Formation and Recrystallization During Freeze-Thaw Cycles and Their Relationship with the Viability of Pig Iliac Endothelium Cells.
    Liu X; Zhao G; Shu Z; Niu D; Zhang Z; Zhou P; Cao Y; Gao D
    Biopreserv Biobank; 2016 Dec; 14(6):511-519. PubMed ID: 27532801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of ice recrystallization and cryoprotective activity of wheat proteins in liver and pancreatic cells.
    Chow-Shi-Yée M; Briard JG; Grondin M; Averill-Bates DA; Ben RN; Ouellet F
    Protein Sci; 2016 May; 25(5):974-86. PubMed ID: 26889747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marine Antifreeze Proteins: Structure, Function, and Application to Cryopreservation as a Potential Cryoprotectant.
    Kim HJ; Lee JH; Hur YB; Lee CW; Park SH; Koo BW
    Mar Drugs; 2017 Jan; 15(2):. PubMed ID: 28134801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifreeze Protein Supplementation During the Warming of Vitrified Bovine Ovarian Tissue Can Improve the Ovarian Tissue Quality After Xenotransplantation.
    Kong HS; Hong YH; Lee J; Youm HW; Lee JR; Suh CS; Kim SH
    Front Endocrinol (Lausanne); 2021; 12():672619. PubMed ID: 34122348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protection of Alcohol Dehydrogenase against Freeze-Thaw Stress by Ice-Binding Proteins Is Proportional to Their Ice Recrystallization Inhibition Property.
    Lee YH; Kim K; Lee JH; Kim HJ
    Mar Drugs; 2020 Dec; 18(12):. PubMed ID: 33322085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of fasudil hydrochloride on the post-thaw viability of cryopreserved porcine adipose-derived stem cells.
    Ji YT; Chen DY; Jiang SL; Qu CQ
    Cryo Letters; 2014; 35(5):356-60. PubMed ID: 25397949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for antifreeze activity of ice-binding protein from arctic yeast.
    Lee JH; Park AK; Do H; Park KS; Moh SH; Chi YM; Kim HJ
    J Biol Chem; 2012 Mar; 287(14):11460-8. PubMed ID: 22303017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.