BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 26323334)

  • 1. Proteomic changes in rice leaves grown under open field high temperature stress conditions.
    Das S; Krishnan P; Mishra V; Kumar R; Ramakrishnan B; Singh NK
    Mol Biol Rep; 2015 Nov; 42(11):1545-58. PubMed ID: 26323334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A proteomic approach in analyzing heat-responsive proteins in rice leaves.
    Lee DG; Ahsan N; Lee SH; Kang KY; Bahk JD; Lee IJ; Lee BH
    Proteomics; 2007 Sep; 7(18):3369-83. PubMed ID: 17722143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Differential expression of proteins in Oryza sativa leaves in response to cadmium stress].
    Xiao QT; Rong H; Zhou LY; Liu J; Lin WX; Lin RY
    Ying Yong Sheng Tai Xue Bao; 2011 Apr; 22(4):1013-9. PubMed ID: 21774326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A proteomic analysis of cold stress responses in rice seedlings.
    Cui S; Huang F; Wang J; Ma X; Cheng Y; Liu J
    Proteomics; 2005 Aug; 5(12):3162-72. PubMed ID: 16078185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential proteomic response of rice (Oryza sativa) leaves exposed to high- and low-temperature stress.
    Gammulla CG; Pascovici D; Atwell BJ; Haynes PA
    Proteomics; 2011 Jul; 11(14):2839-50. PubMed ID: 21695689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic Analysis of Rice Seedlings Under Cold Stress.
    Ji L; Zhou P; Zhu Y; Liu F; Li R; Qiu Y
    Protein J; 2017 Aug; 36(4):299-307. PubMed ID: 28555319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice.
    Liu CW; Chang TS; Hsu YK; Wang AZ; Yen HC; Wu YP; Wang CS; Lai CC
    Proteomics; 2014 Aug; 14(15):1759-75. PubMed ID: 24841874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress.
    Liao JL; Zhou HW; Zhang HY; Zhong PA; Huang YJ
    J Exp Bot; 2014 Feb; 65(2):655-71. PubMed ID: 24376254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic study of Carissa spinarum in response to combined heat and drought stress.
    Zhang M; Li G; Huang W; Bi T; Chen G; Tang Z; Su W; Sun W
    Proteomics; 2010 Sep; 10(17):3117-29. PubMed ID: 20661954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential proteomic response to heat stress in thermal Agrostis scabra and heat-sensitive Agrostis stolonifera.
    Xu C; Huang B
    Physiol Plant; 2010 Jun; 139(2):192-204. PubMed ID: 20113435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2D-DIGE-based proteome expression changes in leaves of rice seedlings exposed to low-level gamma radiation at Iitate village, Fukushima.
    Hayashi G; Moro CF; Rohila JS; Shibato J; Kubo A; Imanaka T; Kimura S; Ozawa S; Fukutani S; Endo S; Ichikawa K; Agrawal GK; Shioda S; Hori M; Fukumoto M; Rakwal R
    Plant Signal Behav; 2015; 10(12):e1103406. PubMed ID: 26451896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative proteomic analysis of rice shoots exposed to high arsenate.
    Liu Y; Li M; Han C; Wu F; Tu B; Yang P
    J Integr Plant Biol; 2013 Oct; 55(10):965-78. PubMed ID: 23773616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype.
    Wang N; Zhao J; He X; Sun H; Zhang G; Wu F
    BMC Genomics; 2015 Jun; 16(1):432. PubMed ID: 26044796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic changes in rice leaves during development of field-grown rice plants.
    Zhao C; Wang J; Cao M; Zhao K; Shao J; Lei T; Yin J; Hill GG; Xu N; Liu S
    Proteomics; 2005 Mar; 5(4):961-72. PubMed ID: 15712239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low temperature treatment at the young microspore stage induces protein changes in rice anthers.
    Imin N; Kerim T; Weinman JJ; Rolfe BG
    Mol Cell Proteomics; 2006 Feb; 5(2):274-92. PubMed ID: 16263700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative proteomic analysis provides new insights into chilling stress responses in rice.
    Yan SP; Zhang QY; Tang ZC; Su WA; Sun WN
    Mol Cell Proteomics; 2006 Mar; 5(3):484-96. PubMed ID: 16316980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A proteomic analysis of rice seedlings responding to 1,2,4-trichlorobenzene stress.
    Ge C; Wan D; Wang Z; Ding Y; Wang Y; Shang Q; Ma F; Luo S
    J Environ Sci (China); 2008; 20(3):309-19. PubMed ID: 18595398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality.
    Shi W; Muthurajan R; Rahman H; Selvam J; Peng S; Zou Y; Jagadish KSV
    New Phytol; 2013 Feb; 197(3):825-837. PubMed ID: 23252708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological and biochemical characterization of NERICA-L-44: a novel source of heat tolerance at the vegetative and reproductive stages in rice.
    Bahuguna RN; Jha J; Pal M; Shah D; Lawas LM; Khetarpal S; Jagadish KS
    Physiol Plant; 2015 Aug; 154(4):543-59. PubMed ID: 25302555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea.
    Kim ST; Kim SG; Hwang DH; Kang SY; Kim HJ; Lee BH; Lee JJ; Kang KY
    Proteomics; 2004 Nov; 4(11):3569-78. PubMed ID: 15478215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.