BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1192 related articles for article (PubMed ID: 26323337)

  • 1. Automatically Detecting Failures in Natural Language Processing Tools for Online Community Text.
    Park A; Hartzler AL; Huh J; McDonald DW; Pratt W
    J Med Internet Res; 2015 Aug; 17(8):e212. PubMed ID: 26323337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of "off-the-shelf" information extraction algorithms in clinical informatics: A feasibility study of MetaMap annotation of Italian medical notes.
    Chiaramello E; Pinciroli F; Bonalumi A; Caroli A; Tognola G
    J Biomed Inform; 2016 Oct; 63():22-32. PubMed ID: 27444186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semantic biomedical resource discovery: a Natural Language Processing framework.
    Sfakianaki P; Koumakis L; Sfakianakis S; Iatraki G; Zacharioudakis G; Graf N; Marias K; Tsiknakis M
    BMC Med Inform Decis Mak; 2015 Sep; 15():77. PubMed ID: 26423616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Natural Language Processing (NLP) systems to annotate drug product labeling with MedDRA terminology.
    Ly T; Pamer C; Dang O; Brajovic S; Haider S; Botsis T; Milward D; Winter A; Lu S; Ball R
    J Biomed Inform; 2018 Jul; 83():73-86. PubMed ID: 29860093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural language processing for automatic evaluation of free-text answers - a feasibility study based on the European Diploma in Radiology examination.
    Stoehr F; Kämpgen B; Müller L; Zufiría LO; Junquero V; Merino C; Mildenberger P; Kloeckner R
    Insights Imaging; 2023 Sep; 14(1):150. PubMed ID: 37726485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RysannMD: A biomedical semantic annotator balancing speed and accuracy.
    Cuzzola J; Jovanović J; Bagheri E
    J Biomed Inform; 2017 Jul; 71():91-109. PubMed ID: 28552401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using rule-based natural language processing to improve disease normalization in biomedical text.
    Kang N; Singh B; Afzal Z; van Mulligen EM; Kors JA
    J Am Med Inform Assoc; 2013; 20(5):876-81. PubMed ID: 23043124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UMLS content views appropriate for NLP processing of the biomedical literature vs. clinical text.
    Demner-Fushman D; Mork JG; Shooshan SE; Aronson AR
    J Biomed Inform; 2010 Aug; 43(4):587-94. PubMed ID: 20152935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated encoding of clinical documents based on natural language processing.
    Friedman C; Shagina L; Lussier Y; Hripcsak G
    J Am Med Inform Assoc; 2004; 11(5):392-402. PubMed ID: 15187068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using natural language processing to identify problem usage of prescription opioids.
    Carrell DS; Cronkite D; Palmer RE; Saunders K; Gross DE; Masters ET; Hylan TR; Von Korff M
    Int J Med Inform; 2015 Dec; 84(12):1057-64. PubMed ID: 26456569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural language processing (NLP) tools in extracting biomedical concepts from research articles: a case study on autism spectrum disorder.
    Peng J; Zhao M; Havrilla J; Liu C; Weng C; Guthrie W; Schultz R; Wang K; Zhou Y
    BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 11):322. PubMed ID: 33380331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ensembles of natural language processing systems for portable phenotyping solutions.
    Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C
    J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A UMLS-based spell checker for natural language processing in vaccine safety.
    Tolentino HD; Matters MD; Walop W; Law B; Tong W; Liu F; Fontelo P; Kohl K; Payne DC
    BMC Med Inform Decis Mak; 2007 Feb; 7():3. PubMed ID: 17295907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic extraction of imaging observation and assessment categories from breast magnetic resonance imaging reports with natural language processing.
    Liu Y; Zhu LN; Liu Q; Han C; Zhang XD; Wang XY
    Chin Med J (Engl); 2019 Jul; 132(14):1673-1680. PubMed ID: 31268905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical Natural Language Processing in 2014: Foundational Methods Supporting Efficient Healthcare.
    Névéol A; Zweigenbaum P
    Yearb Med Inform; 2015 Aug; 10(1):194-8. PubMed ID: 26293868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of biomedical concept identification: MetaMap vs. people.
    Pratt W; Yetisgen-Yildiz M
    AMIA Annu Symp Proc; 2003; 2003():529-33. PubMed ID: 14728229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated SNOMED CT concept and attribute relationship detection through a web-based implementation of cTAKES.
    Kersloot MG; Lau F; Abu-Hanna A; Arts DL; Cornet R
    J Biomed Semantics; 2019 Sep; 10(1):14. PubMed ID: 31533810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmenting Qualitative Text Analysis with Natural Language Processing: Methodological Study.
    Guetterman TC; Chang T; DeJonckheere M; Basu T; Scruggs E; Vydiswaran VGV
    J Med Internet Res; 2018 Jun; 20(6):e231. PubMed ID: 29959110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracting Medical Information From Free-Text and Unstructured Patient-Generated Health Data Using Natural Language Processing Methods: Feasibility Study With Real-world Data.
    Sezgin E; Hussain SA; Rust S; Huang Y
    JMIR Form Res; 2023 Mar; 7():e43014. PubMed ID: 36881467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing.
    Wulff A; Mast M; Hassler M; Montag S; Marschollek M; Jack T
    Methods Inf Med; 2020 Dec; 59(S 02):e64-e78. PubMed ID: 33058101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 60.