BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26325133)

  • 1. Detection of flow direction in high-flying insect and songbird migrants.
    Chapman JW; Nilsson C; Lim KS; Bäckman J; Reynolds DR; Alerstam T; Reynolds AM
    Curr Biol; 2015 Aug; 25(17):R751-2. PubMed ID: 26325133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to wind.
    Chapman JW; Nilsson C; Lim KS; Bäckman J; Reynolds DR; Alerstam T
    J Anim Ecol; 2016 Jan; 85(1):115-24. PubMed ID: 26147535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flying with the winds: differential migration strategies in relation to winds in moth and songbirds.
    Åkesson S
    J Anim Ecol; 2016 Jan; 85(1):1-4. PubMed ID: 26768333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single wind-mediated mechanism explains high-altitude 'non-goal oriented' headings and layering of nocturnally migrating insects.
    Reynolds AM; Reynolds DR; Smith AD; Chapman JW
    Proc Biol Sci; 2010 Mar; 277(1682):765-72. PubMed ID: 19889697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?
    Reynolds AM; Reynolds DR; Smith AD; Chapman JW
    PLoS One; 2010 Dec; 5(12):e15758. PubMed ID: 21209956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orientation in high-flying migrant insects in relation to flows: mechanisms and strategies.
    Reynolds AM; Reynolds DR; Sane SP; Hu G; Chapman JW
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nocturnal migratory songbirds adjust their travelling direction aloft: evidence from a radiotelemetry and radar study.
    Sjöberg S; Nilsson C
    Biol Lett; 2015 Jun; 11(6):20150337. PubMed ID: 26085501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wind selection and drift compensation optimize migratory pathways in a high-flying moth.
    Chapman JW; Reynolds DR; Mouritsen H; Hill JK; Riley JR; Sivell D; Smith AD; Woiwod IP
    Curr Biol; 2008 Apr; 18(7):514-8. PubMed ID: 18394893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds.
    Alerstam T; Chapman JW; Bäckman J; Smith AD; Karlsson H; Nilsson C; Reynolds DR; Klaassen RH; Hill JK
    Proc Biol Sci; 2011 Oct; 278(1721):3074-80. PubMed ID: 21389024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nocturnally migrating songbirds drift when they can and compensate when they must.
    Horton KG; Van Doren BM; Stepanian PM; Hochachka WM; Farnsworth A; Kelly JF
    Sci Rep; 2016 Feb; 6():21249. PubMed ID: 26879152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compensation for wind drift in the nocturnally migrating Song Thrushes in relation to altitude and wind.
    Sinelschikova A; Vorotkov M; Bulyuk V; Bolshakov C
    Behav Processes; 2020 Aug; 177():104154. PubMed ID: 32479841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Body condition and wind support initiate the shift of migratory direction and timing of nocturnal departure in a songbird.
    Schmaljohann H; Naef-Daenzer B
    J Anim Ecol; 2011 Nov; 80(6):1115-22. PubMed ID: 21615404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive strategies of high-flying migratory hoverflies in response to wind currents.
    Gao B; Wotton KR; Hawkes WLS; Menz MHM; Reynolds DR; Zhai BP; Hu G; Chapman JW
    Proc Biol Sci; 2020 Jun; 287(1928):20200406. PubMed ID: 32486972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extreme altitudes during diurnal flights in a nocturnal songbird migrant.
    Sjöberg S; Malmiga G; Nord A; Andersson A; Bäckman J; Tarka M; Willemoes M; Thorup K; Hansson B; Alerstam T; Hasselquist D
    Science; 2021 May; 372(6542):646-648. PubMed ID: 33958477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of a free-flying songbird to an experimental shift of the light polarization pattern around sunset.
    Schmaljohann H; Rautenberg T; Muheim R; Naef-Daenzer B; Bairlein F
    J Exp Biol; 2013 Apr; 216(Pt 8):1381-7. PubMed ID: 23264493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flight orientation behaviors promote optimal migration trajectories in high-flying insects.
    Chapman JW; Nesbit RL; Burgin LE; Reynolds DR; Smith AD; Middleton DR; Hill JK
    Science; 2010 Feb; 327(5966):682-5. PubMed ID: 20133570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Not all songbirds calibrate their magnetic compass from twilight cues: a telemetry study.
    Chernetsov N; Kishkinev D; Kosarev V; Bolshakov CV
    J Exp Biol; 2011 Aug; 214(Pt 15):2540-3. PubMed ID: 21753048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wind-Related Orientation Patterns in Diurnal, Crepuscular and Nocturnal High-Altitude Insect Migrants.
    Hu G; Lim KS; Reynolds DR; Reynolds AM; Chapman JW
    Front Behav Neurosci; 2016; 10():32. PubMed ID: 26973481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of vision in odor-plume tracking by walking and flying insects.
    Willis MA; Avondet JL; Zheng E
    J Exp Biol; 2011 Dec; 214(Pt 24):4121-32. PubMed ID: 22116754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Optimal Strategies for Finding a Resource-Linked, Windborne Odor Plume: Theories, Robotics, and Biomimetic Lessons from Flying Insects.
    Bau J; Cardé RT
    Integr Comp Biol; 2015 Sep; 55(3):461-77. PubMed ID: 25980569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.