These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Differential Roles of a Family of Flavodoxin-Like Proteins That Promote Resistance to Quinone-Mediated Oxidative Stress in Candida albicans. Foderaro JE; Konopka JB Infect Immun; 2021 Mar; 89(4):. PubMed ID: 33468576 [TBL] [Abstract][Full Text] [Related]
3. Sur7 promotes plasma membrane organization and is needed for resistance to stressful conditions and to the invasive growth and virulence of Candida albicans. Douglas LM; Wang HX; Keppler-Ross S; Dean N; Konopka JB mBio; 2012; 3(1):. PubMed ID: 22202230 [TBL] [Abstract][Full Text] [Related]
4. ERG11 couples oxidative stress adaptation, hyphal elongation and virulence in Candida albicans. Wu Y; Wu M; Wang Y; Chen Y; Gao J; Ying C FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 29931064 [TBL] [Abstract][Full Text] [Related]
5. Role of TFP1 in vacuolar acidification, oxidative stress and filamentous development in Candida albicans. Jia C; Yu Q; Xu N; Zhang B; Dong Y; Ding X; Chen Y; Zhang B; Xing L; Li M Fungal Genet Biol; 2014 Oct; 71():58-67. PubMed ID: 25220074 [TBL] [Abstract][Full Text] [Related]
6. Novel role of the Candida albicans ferric reductase gene CFL1 in iron acquisition, oxidative stress tolerance, morphogenesis and virulence. Xu N; Qian K; Dong Y; Chen Y; Yu Q; Zhang B; Xing L; Li M Res Microbiol; 2014 Apr; 165(3):252-61. PubMed ID: 24631590 [TBL] [Abstract][Full Text] [Related]
7. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis. Moran GP; MacCallum DM; Spiering MJ; Coleman DC; Sullivan DJ Mol Microbiol; 2007 Nov; 66(4):915-29. PubMed ID: 17927699 [TBL] [Abstract][Full Text] [Related]
8. Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans. Enjalbert B; MacCallum DM; Odds FC; Brown AJ Infect Immun; 2007 May; 75(5):2143-51. PubMed ID: 17339352 [TBL] [Abstract][Full Text] [Related]
9. Histone deacetylase Sir2 promotes the systemic Yang C; Li G; Zhang Q; Bai W; Li Q; Zhang P; Zhang J mBio; 2024 Jun; 15(6):e0044524. PubMed ID: 38682948 [TBL] [Abstract][Full Text] [Related]
10. Peroxisomal fatty acid beta-oxidation is not essential for virulence of Candida albicans. Piekarska K; Mol E; van den Berg M; Hardy G; van den Burg J; van Roermund C; MacCallum D; Odds F; Distel B Eukaryot Cell; 2006 Nov; 5(11):1847-56. PubMed ID: 16963628 [TBL] [Abstract][Full Text] [Related]
12. Sequence variations and protein expression levels of the two immune evasion proteins Gpm1 and Pra1 influence virulence of clinical Candida albicans isolates. Luo S; Hipler UC; Münzberg C; Skerka C; Zipfel PF PLoS One; 2015; 10(2):e0113192. PubMed ID: 25692293 [TBL] [Abstract][Full Text] [Related]
13. The Ccz1 mediates the autophagic clearance of damaged mitochondria in response to oxidative stress in Candida albicans. Dong Y; Yu Q; Chen Y; Xu N; Zhao Q; Jia C; Zhang B; Zhang K; Zhang B; Xing L; Li M Int J Biochem Cell Biol; 2015 Dec; 69():41-51. PubMed ID: 26471407 [TBL] [Abstract][Full Text] [Related]
14. Multiple Alternative Carbon Pathways Combine To Promote Candida albicans Stress Resistance, Immune Interactions, and Virulence. Williams RB; Lorenz MC mBio; 2020 Jan; 11(1):. PubMed ID: 31937647 [TBL] [Abstract][Full Text] [Related]
15. Mnn10 Maintains Pathogenicity in Candida albicans by Extending α-1,6-Mannose Backbone to Evade Host Dectin-1 Mediated Antifungal Immunity. Zhang SQ; Zou Z; Shen H; Shen SS; Miao Q; Huang X; Liu W; Li LP; Chen SM; Yan L; Zhang JD; Zhao JJ; Xu GT; An MM; Jiang YY PLoS Pathog; 2016 May; 12(5):e1005617. PubMed ID: 27144456 [TBL] [Abstract][Full Text] [Related]
16. The Candida albicans Ddr48 protein is essential for filamentation, stress response, and confers partial antifungal drug resistance. Dib L; Hayek P; Sadek H; Beyrouthy B; Khalaf RA Med Sci Monit; 2008 Jun; 14(6):BR113-121. PubMed ID: 18509269 [TBL] [Abstract][Full Text] [Related]
17. Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Rocha CR; Schröppel K; Harcus D; Marcil A; Dignard D; Taylor BN; Thomas DY; Whiteway M; Leberer E Mol Biol Cell; 2001 Nov; 12(11):3631-43. PubMed ID: 11694594 [TBL] [Abstract][Full Text] [Related]
18. A family of glutathione peroxidases contributes to oxidative stress resistance in Candida albicans. Miramón P; Dunker C; Kasper L; Jacobsen ID; Barz D; Kurzai O; Hube B Med Mycol; 2014 Apr; 52(3):223-39. PubMed ID: 24625675 [TBL] [Abstract][Full Text] [Related]
19. Candida albicans ISW2 Regulates Chlamydospore Suspensor Cell Formation and Virulence In Vivo in a Mouse Model of Disseminated Candidiasis. Navarathna DH; Pathirana RU; Lionakis MS; Nickerson KW; Roberts DD PLoS One; 2016; 11(10):e0164449. PubMed ID: 27727302 [TBL] [Abstract][Full Text] [Related]
20. Spindle assembly checkpoint component CaMad2p is indispensable for Candida albicans survival and virulence in mice. Bai C; Ramanan N; Wang YM; Wang Y Mol Microbiol; 2002 Jul; 45(1):31-44. PubMed ID: 12100546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]