These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26325334)

  • 1. Connectedness percolation in isotropic systems of monodisperse spherocylinders.
    Chatterjee AP
    J Phys Condens Matter; 2015 Sep; 27(37):375302. PubMed ID: 26325334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unusual geometric percolation of hard nanorods in the uniaxial nematic liquid crystalline phase.
    Finner SP; Atashpendar A; Schilling T; van der Schoot P
    Phys Rev E; 2019 Dec; 100(6-1):062129. PubMed ID: 31962472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasiuniversal connectedness percolation of polydisperse rod systems.
    Nigro B; Grimaldi C; Ryser P; Chatterjee AP; van der Schoot P
    Phys Rev Lett; 2013 Jan; 110(1):015701. PubMed ID: 23383806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Percolation in suspensions of polydisperse hard rods: Quasi universality and finite-size effects.
    Meyer H; van der Schoot P; Schilling T
    J Chem Phys; 2015 Jul; 143(4):044901. PubMed ID: 26233158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Connectivity percolation in suspensions of attractive square-well spherocylinders.
    Dixit M; Meyer H; Schilling T
    Phys Rev E; 2016 Jan; 93(1):012116. PubMed ID: 26871033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models.
    Berhan L; Sastry AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041120. PubMed ID: 17500878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast off-lattice Monte Carlo simulations of soft-core spherocylinders: isotropic-nematic transition and comparisons with virial expansion.
    Zong J; Zhang X; Wang Q
    J Chem Phys; 2012 Oct; 137(13):134904. PubMed ID: 23039610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuum percolation of polydisperse rods in quadrupole fields: Theory and simulations.
    Finner SP; Kotsev MI; Miller MA; van der Schoot P
    J Chem Phys; 2018 Jan; 148(3):034903. PubMed ID: 29352778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connectedness percolation in monodisperse rod systems: clustering effects.
    Chatterjee AP
    J Phys Condens Matter; 2011 Sep; 23(37):375101. PubMed ID: 21844645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Percolation thresholds for polydisperse circular disks: a lattice-based exploration.
    Chatterjee AP
    J Chem Phys; 2014 Jul; 141(3):034903. PubMed ID: 25053338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle connectedness and cluster formation in sequential depositions of particles: integral-equation theory.
    Danwanichakul P; Glandt ED
    J Chem Phys; 2004 Nov; 121(19):9684-92. PubMed ID: 15538892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling percolation in high-aspect-ratio fiber systems. II. The effect of waviness on the percolation onset.
    Berhan L; Sastry AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041121. PubMed ID: 17500879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bethe lattice model with site and bond correlations for continuum percolation by isotropic systems of monodisperse rods.
    Chatterjee AP
    Phys Rev E; 2017 Aug; 96(2-1):022142. PubMed ID: 28950586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuum percolation of congruent overlapping spherocylinders.
    Xu W; Su X; Jiao Y
    Phys Rev E; 2016 Sep; 94(3-1):032122. PubMed ID: 27739717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuum percolation in colloidal dispersions of hard nanorods in external axial and planar fields.
    Pihlajamaa I; de Bruijn R; van der Schoot P
    Soft Matter; 2021 Dec; 17(46):10458-10468. PubMed ID: 34766962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency domain photon migration measurements of dense monodisperse charged lattices and analysis using solutions of Ornstein Zernike equations.
    Dali SS; Sevick-Muraca EM
    J Colloid Interface Sci; 2012 Nov; 386(1):114-20. PubMed ID: 22909960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-size scaling in stick percolation.
    Li J; Zhang SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):040104. PubMed ID: 19905260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Percolation of linear k-mers on a square lattice: from isotropic through partially ordered to completely aligned states.
    Tarasevich YY; Lebovka NI; Laptev VV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061116. PubMed ID: 23367902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and percolation of one-patch spherocylinders.
    Zhang CY; Jian XL; Lu W
    Soft Matter; 2015 Feb; 11(7):1362-8. PubMed ID: 25575168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3d Monte Carlo simulation of site-bond continuum percolation of spheres.
    Rottereau M; Gimel JC; Nicolai T; Durand D
    Eur Phys J E Soft Matter; 2003 May; 11(1):61-4. PubMed ID: 15015088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.