These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 26325339)
1. Combined effects of flow-induced shear stress and electromagnetic field on neural differentiation of mesenchymal stem cells. Mascotte-Cruz JU; Ríos A; Escalante B Electromagn Biol Med; 2016; 35(2):161-6. PubMed ID: 26325339 [TBL] [Abstract][Full Text] [Related]
2. Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells. Kim HJ; Jung J; Park JH; Kim JH; Ko KN; Kim CW Exp Biol Med (Maywood); 2013 Aug; 238(8):923-31. PubMed ID: 23970408 [TBL] [Abstract][Full Text] [Related]
3. Egr1 mediated the neuronal differentiation induced by extremely low-frequency electromagnetic fields. Seong Y; Moon J; Kim J Life Sci; 2014 Apr; 102(1):16-27. PubMed ID: 24603130 [TBL] [Abstract][Full Text] [Related]
4. Fifty-Hertz electromagnetic fields facilitate the induction of rat bone mesenchymal stromal cells to differentiate into functional neurons. Bai WF; Xu WC; Feng Y; Huang H; Li XP; Deng CY; Zhang MS Cytotherapy; 2013 Aug; 15(8):961-70. PubMed ID: 23602580 [TBL] [Abstract][Full Text] [Related]
5. The expression of pluripotency and neuronal differentiation markers under the influence of electromagnetic field and nitric oxide. Haghighat N; Abdolmaleki P; Parnian J; Behmanesh M Mol Cell Neurosci; 2017 Dec; 85():19-28. PubMed ID: 28843440 [TBL] [Abstract][Full Text] [Related]
6. Stimulation of neural differentiation in human bone marrow mesenchymal stem cells by extremely low-frequency electromagnetic fields incorporated with MNPs. Choi YK; Lee DH; Seo YK; Jung H; Park JK; Cho H Appl Biochem Biotechnol; 2014 Oct; 174(4):1233-1245. PubMed ID: 25099373 [TBL] [Abstract][Full Text] [Related]
7. Combined effect of pulsed electromagnetic field and sound wave on In vitro and In vivo neural differentiation of human mesenchymal stem cells. Choi YK; Urnukhsaikhan E; Yoon HH; Seo YK; Cho H; Jeong JS; Kim SC; Park JK Biotechnol Prog; 2017 Jan; 33(1):201-211. PubMed ID: 27790871 [TBL] [Abstract][Full Text] [Related]
8. Extremely low-frequency electromagnetic field induces neural differentiation of hBM-MSCs through regulation of (Zn)-metallothionein-3. Aikins AR; Hong SW; Kim HJ; Yoon CH; Chung JH; Kim M; Kim CW Bioelectromagnetics; 2017 Jul; 38(5):364-373. PubMed ID: 28370392 [TBL] [Abstract][Full Text] [Related]
9. Ferritin is associated with neural differentiation of bone marrow-derived mesenchymal stem cells under extremely low-frequency electromagnetic field. Lee HN; Ko KN; Kim HJ; Rosebud Aikins A; Kim CW Cell Mol Biol (Noisy-le-grand); 2015 Nov; 61(7):55-9. PubMed ID: 26602884 [TBL] [Abstract][Full Text] [Related]
10. Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation. Park JE; Seo YK; Yoon HH; Kim CW; Park JK; Jeon S Neurochem Int; 2013 Mar; 62(4):418-24. PubMed ID: 23411410 [TBL] [Abstract][Full Text] [Related]
11. Effect of 1 mT sinusoidal electromagnetic fields on proliferation and osteogenic differentiation of rat bone marrow mesenchymal stromal cells. Liu C; Yu J; Yang Y; Tang X; Zhao D; Zhao W; Wu H Bioelectromagnetics; 2013 Sep; 34(6):453-64. PubMed ID: 23589052 [TBL] [Abstract][Full Text] [Related]
12. The interaction between β1 integrins and ERK1/2 in osteogenic differentiation of human mesenchymal stem cells under fluid shear stress modelled by a perfusion system. Liu L; Zong C; Li B; Shen D; Tang Z; Chen J; Zheng Q; Tong X; Gao C; Wang J J Tissue Eng Regen Med; 2014 Feb; 8(2):85-96. PubMed ID: 22610905 [TBL] [Abstract][Full Text] [Related]
13. [Effects of different frequency electromagnetic fields on the differentiation of midbrain neural stem cells]. Li Y; Zhao L; Xing X; Lou SJ; He C; Lu CL Space Med Med Eng (Beijing); 2002 Oct; 15(5):374-6. PubMed ID: 12449147 [TBL] [Abstract][Full Text] [Related]
14. Comparative analysis of neural differentiation potential in human mesenchymal stem cells derived from chorion and adult bone marrow. Ziadlou R; Shahhoseini M; Safari F; Sayahpour FA; Nemati S; Eslaminejad MB Cell Tissue Res; 2015 Nov; 362(2):367-77. PubMed ID: 26022335 [TBL] [Abstract][Full Text] [Related]
15. Electromagnetic fields and nanomagnetic particles increase the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Kim MO; Jung H; Kim SC; Park JK; Seo YK Int J Mol Med; 2015 Jan; 35(1):153-60. PubMed ID: 25352086 [TBL] [Abstract][Full Text] [Related]
16. Valproic acid promotes neuronal differentiation by induction of neuroprogenitors in human bone-marrow mesenchymal stromal cells. Jeong SG; Ohn T; Kim SH; Cho GW Neurosci Lett; 2013 Oct; 554():22-7. PubMed ID: 24021810 [TBL] [Abstract][Full Text] [Related]
17. Pulsed magnetic therapy increases osteogenic differentiation of mesenchymal stem cells only if they are pre-committed. Ferroni L; Tocco I; De Pieri A; Menarin M; Fermi E; Piattelli A; Gardin C; Zavan B Life Sci; 2016 May; 152():44-51. PubMed ID: 26979772 [TBL] [Abstract][Full Text] [Related]
18. Effect of fluid shear stress on cardiomyogenic differentiation of rat bone marrow mesenchymal stem cells. Huang Y; Jia X; Bai K; Gong X; Fan Y Arch Med Res; 2010 Oct; 41(7):497-505. PubMed ID: 21167388 [TBL] [Abstract][Full Text] [Related]
19. Effect of extremely low frequency electromagnetic field on MAP2 and Nestin gene expression of hair follicle dermal papilla cells. Moraveji M; Haghighipour N; Keshvari H; Nourizadeh Abbariki T; Shokrgozar MA; Amanzadeh A Int J Artif Organs; 2016 Aug; 39(6):294-9. PubMed ID: 27515859 [TBL] [Abstract][Full Text] [Related]
20. Endothelium oriented differentiation of bone marrow mesenchymal stem cells under chemical and mechanical stimulations. Bai K; Huang Y; Jia X; Fan Y; Wang W J Biomech; 2010 Apr; 43(6):1176-81. PubMed ID: 20022602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]