BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26325447)

  • 1. Examination of Rapid Dopamine Dynamics with Fast Scan Cyclic Voltammetry During Intra-oral Tastant Administration in Awake Rats.
    Wickham RJ; Park J; Nunes EJ; Addy NA
    J Vis Exp; 2015 Aug; (102):e52468. PubMed ID: 26325447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sampling phasic dopamine signaling with fast-scan cyclic voltammetry in awake, behaving rats.
    Fortin SM; Cone JJ; Ng-Evans S; McCutcheon JE; Roitman MF
    Curr Protoc Neurosci; 2015 Jan; 70():7.25.1-7.25.20. PubMed ID: 25559005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined Infusion and Stimulation with Fast-Scan Cyclic Voltammetry (CIS-FSCV) to Assess Ventral Tegmental Area Receptor Regulation of Phasic Dopamine.
    Wickham RJ; Lehr M; Mitchell L; Addy NA
    J Vis Exp; 2020 Apr; (158):. PubMed ID: 32420985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential Dopamine Release Dynamics in the Nucleus Accumbens Core and Shell Reveal Complementary Signals for Error Prediction and Incentive Motivation.
    Saddoris MP; Cacciapaglia F; Wightman RM; Carelli RM
    J Neurosci; 2015 Aug; 35(33):11572-82. PubMed ID: 26290234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats.
    Li YT; Wickens JR; Huang YL; Pan WH; Chen FY; Chen JJ
    J Neural Eng; 2013 Aug; 10(4):046007. PubMed ID: 23770892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli.
    Roitman MF; Wheeler RA; Wightman RM; Carelli RM
    Nat Neurosci; 2008 Dec; 11(12):1376-7. PubMed ID: 18978779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel electrochemical approach for prolonged measurement of absolute levels of extracellular dopamine in brain slices.
    Burrell MH; Atcherley CW; Heien ML; Lipski J
    ACS Chem Neurosci; 2015 Nov; 6(11):1802-12. PubMed ID: 26322962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits.
    Salamone JD; Correa M; Farrar A; Mingote SM
    Psychopharmacology (Berl); 2007 Apr; 191(3):461-82. PubMed ID: 17225164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleus Accumbens Acetylcholine Receptors Modulate Dopamine and Motivation.
    Collins AL; Aitken TJ; Greenfield VY; Ostlund SB; Wassum KM
    Neuropsychopharmacology; 2016 Nov; 41(12):2830-2838. PubMed ID: 27240658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional variation in phasic dopamine release during alcohol and sucrose self-administration in rats.
    Shnitko TA; Robinson DL
    ACS Chem Neurosci; 2015 Jan; 6(1):147-54. PubMed ID: 25493956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges to Body Fluid Homeostasis Differentially Recruit Phasic Dopamine Signaling in a Taste-Selective Manner.
    Fortin SM; Roitman MF
    J Neurosci; 2018 Aug; 38(31):6841-6853. PubMed ID: 29934352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep brain stimulation of the medial forebrain bundle elevates striatal dopamine concentration without affecting spontaneous or reward-induced phasic release.
    Klanker M; Feenstra M; Willuhn I; Denys D
    Neuroscience; 2017 Nov; 364():82-92. PubMed ID: 28918253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regionally distinct phasic dopamine release patterns in the striatum during reversal learning.
    Klanker M; Fellinger L; Feenstra M; Willuhn I; Denys D
    Neuroscience; 2017 Mar; 345():110-123. PubMed ID: 27185487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time assessments of dopamine function during behavior: single-unit recording, iontophoresis, and fast-scan cyclic voltammetry in awake, unrestrained rats.
    Rebec GV
    Alcohol Clin Exp Res; 1998 Feb; 22(1):32-40. PubMed ID: 9514283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking.
    Ikemoto S; Panksepp J
    Brain Res Brain Res Rev; 1999 Dec; 31(1):6-41. PubMed ID: 10611493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopamine signaling in the nucleus accumbens of animals self-administering drugs of abuse.
    Willuhn I; Wanat MJ; Clark JJ; Phillips PE
    Curr Top Behav Neurosci; 2010; 3():29-71. PubMed ID: 21161749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compromised Dopaminergic Encoding of Reward Accompanying Suppressed Willingness to Overcome High Effort Costs Is a Prominent Prodromal Characteristic of the Q175 Mouse Model of Huntington's Disease.
    Covey DP; Dantrassy HM; Zlebnik NE; Gildish I; Cheer JF
    J Neurosci; 2016 May; 36(18):4993-5002. PubMed ID: 27147652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opposing Roles of Rapid Dopamine Signaling Across the Rostral-Caudal Axis of the Nucleus Accumbens Shell in Drug-Induced Negative Affect.
    Hurley SW; West EA; Carelli RM
    Biol Psychiatry; 2017 Dec; 82(11):839-846. PubMed ID: 28624112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic Augmentation of Endocannabinoid Levels Persistently Increases Dopaminergic Encoding of Reward Cost and Motivation.
    Covey DP; Hernandez E; Luján MÁ; Cheer JF
    J Neurosci; 2021 Aug; 41(32):6946-6953. PubMed ID: 34230105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topography of Reward and Aversion Encoding in the Mesolimbic Dopaminergic System.
    Yuan L; Dou YN; Sun YG
    J Neurosci; 2019 Aug; 39(33):6472-6481. PubMed ID: 31217328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.