These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26325481)

  • 1. A superellipsoid-plane model for simulating foot-ground contact during human gait.
    Lopes DS; Neptune RR; Ambrósio JA; Silva MT
    Comput Methods Biomech Biomed Engin; 2016; 19(9):954-63. PubMed ID: 26325481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rolling constraint reproduces ground reaction forces and moments in dynamic simulations of walking, running, and crouch gait.
    Hamner SR; Seth A; Steele KM; Delp SL
    J Biomech; 2013 Jun; 46(10):1772-6. PubMed ID: 23702045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait.
    Lin YC; Walter JP; Pandy MG
    Ann Biomed Eng; 2018 Aug; 46(8):1216-1227. PubMed ID: 29671152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Quick Turn of Foot: Rigid Foot-Ground Contact Models for Human Motion Prediction.
    Millard M; Mombaur K
    Front Neurorobot; 2019; 13():62. PubMed ID: 31440154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimates of muscle function in human gait depend on how foot-ground contact is modelled.
    Dorn TW; Lin YC; Pandy MG
    Comput Methods Biomech Biomed Engin; 2012; 15(6):657-68. PubMed ID: 21614707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Subject-Specific Foot-Ground Contact Model for Walking.
    Jackson JN; Hass CJ; Fregly BJ
    J Biomech Eng; 2016 Sep; 138(9):0910021-09100212. PubMed ID: 27379886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residual Elimination Algorithm Enhancements to Improve Foot Motion Tracking During Forward Dynamic Simulations of Gait.
    Jackson JN; Hass CJ; Fregly BJ
    J Biomech Eng; 2015 Nov; 137(11):111002. PubMed ID: 26299394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-segment foot kinematics and ground reaction forces during gait of individuals with plantar fasciitis.
    Chang R; Rodrigues PA; Van Emmerik RE; Hamill J
    J Biomech; 2014 Aug; 47(11):2571-7. PubMed ID: 24992816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ground reaction force estimation using an insole-type pressure mat and joint kinematics during walking.
    Jung Y; Jung M; Lee K; Koo S
    J Biomech; 2014 Aug; 47(11):2693-9. PubMed ID: 24917473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation.
    Lin YC; Pandy MG
    J Biomech; 2017 Jul; 59():1-8. PubMed ID: 28583674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forefoot angle determines duration and amplitude of pronation during walking.
    Monaghan GM; Lewis CL; Hsu WH; Saltzman E; Hamill J; Holt KG
    Gait Posture; 2013 May; 38(1):8-13. PubMed ID: 23117096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting ground reaction and tibiotalar contact forces after total ankle arthroplasty during walking.
    Zhang Y; Chen Z; Peng Y; Zhao H; Liang X; Jin Z
    Proc Inst Mech Eng H; 2020 Dec; 234(12):1432-1444. PubMed ID: 32741296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A two-part, viscoelastic foot model for use in gait simulations.
    Gilchrist LA; Winter DA
    J Biomech; 1996 Jun; 29(6):795-8. PubMed ID: 9147977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading.
    Halloran JP; Ackermann M; Erdemir A; van den Bogert AJ
    J Biomech; 2010 Oct; 43(14):2810-5. PubMed ID: 20573349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles.
    Li J; Lu Y; Miller SC; Jin Z; Hua X
    J Biomech; 2019 Sep; 94():230-234. PubMed ID: 31421809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dynamic finite element analysis of human foot complex in the sagittal plane during level walking.
    Qian Z; Ren L; Ding Y; Hutchinson JR; Ren L
    PLoS One; 2013; 8(11):e79424. PubMed ID: 24244500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A foot/ground contact model for biomechanical inverse dynamics analysis.
    Van Hulle R; Schwartz C; Denoël V; Croisier JL; Forthomme B; Brüls O
    J Biomech; 2020 Feb; 100():109412. PubMed ID: 31959391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.
    Mithraratne K; Ho H; Hunter PJ; Fernandez JW
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in vitro approach to the evaluation of foot-ankle kinematics: performance evaluation of a custom-built gait simulator.
    Peeters K; Natsakis T; Burg J; Spaepen P; Jonkers I; Dereymaeker G; Vander Sloten J
    Proc Inst Mech Eng H; 2013 Sep; 227(9):955-67. PubMed ID: 23736995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of the lower leg during walking: a versatile model of the foot.
    Stefanovic F; Popovic DB
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):63-9. PubMed ID: 19211325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.