These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 26325600)

  • 1. Selection and validation of reference genes for quantitative real-time PCR studies during Saccharomyces cerevisiae alcoholic fermentation in the presence of sulfite.
    Nadai C; Campanaro S; Giacomini A; Corich V
    Int J Food Microbiol; 2015 Dec; 215():49-56. PubMed ID: 26325600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different mechanisms of resistance modulate sulfite tolerance in wine yeasts.
    Nadai C; Treu L; Campanaro S; Giacomini A; Corich V
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):797-813. PubMed ID: 26615396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfur and adenine metabolisms are linked, and both modulate sulfite resistance in wine yeast.
    Aranda A; Jiménez-Martí E; Orozco H; Matallana E; Del Olmo M
    J Agric Food Chem; 2006 Aug; 54(16):5839-46. PubMed ID: 16881685
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Varela C; Bartel C; Roach M; Borneman A; Curtin C
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30552183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions.
    Varela C; Cárdenas J; Melo F; Agosin E
    Yeast; 2005 Apr; 22(5):369-83. PubMed ID: 15806604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive response to wine selective pressures shapes the genome of a
    Lairón-Peris M; Castiglioni GL; Routledge SJ; Alonso-Del-Real J; Linney JA; Pitt AR; Melcr J; Goddard AD; Barrio E; Querol A
    Microb Genom; 2021 Aug; 7(8):. PubMed ID: 34448691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of new Saccharomyces cerevisiae variants of the MET2 and SKP2 genes controlling the sulfur assimilation pathway and the production of undesirable sulfur compounds during alcoholic fermentation.
    Noble J; Sanchez I; Blondin B
    Microb Cell Fact; 2015 May; 14():68. PubMed ID: 25947166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examination of the transcriptional specificity of an enological yeast. A pilot experiment on the chromosome-III right arm.
    Rachidi N; Barre P; Blondin B
    Curr Genet; 2000 Jan; 37(1):1-11. PubMed ID: 10672438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular and enological characterization of a natural Saccharomyces uvarum and Saccharomyces cerevisiae hybrid.
    Pérez-Torrado R; González SS; Combina M; Barrio E; Querol A
    Int J Food Microbiol; 2015 Jul; 204():101-10. PubMed ID: 25867085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae.
    Teste MA; Duquenne M; François JM; Parrou JL
    BMC Mol Biol; 2009 Oct; 10():99. PubMed ID: 19874630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification of genes involved in growth and fermentation activity at low temperature in Saccharomyces cerevisiae.
    Salvadó Z; Ramos-Alonso L; Tronchoni J; Penacho V; García-Ríos E; Morales P; Gonzalez R; Guillamón JM
    Int J Food Microbiol; 2016 Nov; 236():38-46. PubMed ID: 27442849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new chromosomal rearrangement improves the adaptation of wine yeasts to sulfite.
    García-Ríos E; Nuévalos M; Barrio E; Puig S; Guillamón JM
    Environ Microbiol; 2019 May; 21(5):1771-1781. PubMed ID: 30859719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional response of Saccharomyces cerevisiae to different nitrogen concentrations during alcoholic fermentation.
    Mendes-Ferreira A; del Olmo M; García-Martínez J; Jiménez-Martí E; Mendes-Faia A; Pérez-Ortín JE; Leão C
    Appl Environ Microbiol; 2007 May; 73(9):3049-60. PubMed ID: 17337556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNAseq-based transcriptome comparison of Saccharomyces cerevisiae strains isolated from diverse fermentative environments.
    Ibáñez C; Pérez-Torrado R; Morard M; Toft C; Barrio E; Querol A
    Int J Food Microbiol; 2017 Sep; 257():262-270. PubMed ID: 28711856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early transcriptional response to biotic stress in mixed starter fermentations involving Saccharomyces cerevisiae and Torulaspora delbrueckii.
    Tronchoni J; Curiel JA; Morales P; Torres-Pérez R; Gonzalez R
    Int J Food Microbiol; 2017 Jan; 241():60-68. PubMed ID: 27756034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide gene expression of a natural hybrid between Saccharomyces cerevisiae and S. kudriavzevii under enological conditions.
    Combina M; Pérez-Torrado R; Tronchoni J; Belloch C; Querol A
    Int J Food Microbiol; 2012 Jul; 157(3):340-5. PubMed ID: 22748671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae.
    Walker ME; Nguyen TD; Liccioli T; Schmid F; Kalatzis N; Sundstrom JF; Gardner JM; Jiranek V
    BMC Genomics; 2014 Jul; 15(1):552. PubMed ID: 24993029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae.
    Comitini F; Gobbi M; Domizio P; Romani C; Lencioni L; Mannazzu I; Ciani M
    Food Microbiol; 2011 Aug; 28(5):873-82. PubMed ID: 21569929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation.
    Mendes-Ferreira A; del Olmo M; García-Martínez J; Jiménez-Martí E; Leão C; Mendes-Faia A; Pérez-Ortín JE
    Appl Environ Microbiol; 2007 Aug; 73(16):5363-9. PubMed ID: 17601813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing expression of SSU1 genes in Saccharomyces uvarum leads to an increase in sulfite tolerance and a transcriptome profile change.
    Liu XZ; Sang M; Zhang XA; Zhang TK; Zhang HY; He X; Li SX; Sun XD; Zhang ZM
    FEMS Yeast Res; 2017 May; 17(3):. PubMed ID: 28449102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.