These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 26328328)
1. Characteristics of Plasma Treated Electrospun Polycaprolactone (PCL) Nanofiber Scaffold for Bone Tissue Engineering. Ko YM; Choi DY; Jung SC; Kim BH J Nanosci Nanotechnol; 2015 Jan; 15(1):192-5. PubMed ID: 26328328 [TBL] [Abstract][Full Text] [Related]
2. A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Li D; Chen W; Sun B; Li H; Wu T; Ke Q; Huang C; Ei-Hamshary H; Al-Deyab SS; Mo X Colloids Surf B Biointerfaces; 2016 Oct; 146():632-41. PubMed ID: 27429297 [TBL] [Abstract][Full Text] [Related]
3. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Gautam S; Chou CF; Dinda AK; Potdar PD; Mishra NC Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():402-9. PubMed ID: 24268275 [TBL] [Abstract][Full Text] [Related]
4. Surface plasma treatment of poly(caprolactone) micro, nano, and multiscale fibrous scaffolds for enhanced osteoconductivity. Sankar D; Shalumon KT; Chennazhi KP; Menon D; Jayakumar R Tissue Eng Part A; 2014 Jun; 20(11-12):1689-702. PubMed ID: 24377950 [TBL] [Abstract][Full Text] [Related]
5. Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Fadaie M; Mirzaei E; Geramizadeh B; Asvar Z Carbohydr Polym; 2018 Nov; 199():628-640. PubMed ID: 30143171 [TBL] [Abstract][Full Text] [Related]
7. Electrospun Cytocompatible Polycaprolactone Blend Composite with Enhanced Wettability for Bone Tissue Engineering. Chakrapani VY; Kumar TSS; Raj DK; Kumary TV J Nanosci Nanotechnol; 2017 Apr; 17(4):2320-328. PubMed ID: 29640156 [TBL] [Abstract][Full Text] [Related]
8. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Chen H; Huang J; Yu J; Liu S; Gu P Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540 [TBL] [Abstract][Full Text] [Related]
9. Tissue engineered plant extracts as nanofibrous wound dressing. Jin G; Prabhakaran MP; Kai D; Annamalai SK; Arunachalam KD; Ramakrishna S Biomaterials; 2013 Jan; 34(3):724-34. PubMed ID: 23111334 [TBL] [Abstract][Full Text] [Related]
10. Nanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells. Gaharwar AK; Mukundan S; Karaca E; Dolatshahi-Pirouz A; Patel A; Rangarajan K; Mihaila SM; Iviglia G; Zhang H; Khademhosseini A Tissue Eng Part A; 2014 Aug; 20(15-16):2088-101. PubMed ID: 24842693 [TBL] [Abstract][Full Text] [Related]
11. Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering. Ba Linh NT; Min YK; Lee BT J Biomater Sci Polym Ed; 2013; 24(5):520-38. PubMed ID: 23565865 [TBL] [Abstract][Full Text] [Related]
12. Assembling of electrospun meshes into three-dimensional porous scaffolds for bone repair. Song J; Zhu G; Wang L; An G; Shi X; Wang Y Biofabrication; 2017 Feb; 9(1):015018. PubMed ID: 28140360 [TBL] [Abstract][Full Text] [Related]
13. Skin regeneration stimulation: the role of PCL-platelet gel nanofibrous scaffold. Ranjbarvan P; Soleimani M; Samadi Kuchaksaraei A; Ai J; Faridi Majidi R; Verdi J Microsc Res Tech; 2017 May; 80(5):495-503. PubMed ID: 28124460 [TBL] [Abstract][Full Text] [Related]
14. Electrospun nanofibrous 3D scaffold for bone tissue engineering. Eap S; Ferrand A; Palomares CM; Hébraud A; Stoltz JF; Mainard D; Schlatter G; Benkirane-Jessel N Biomed Mater Eng; 2012; 22(1-3):137-41. PubMed ID: 22766712 [TBL] [Abstract][Full Text] [Related]
15. Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration. Ren J; Blackwood KA; Doustgani A; Poh PP; Steck R; Stevens MM; Woodruff MA J Biomed Mater Res A; 2014 Sep; 102(9):3140-53. PubMed ID: 24133006 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Gautam S; Dinda AK; Mishra NC Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1228-35. PubMed ID: 23827565 [TBL] [Abstract][Full Text] [Related]
17. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering. Gao X; Zhang X; Song J; Xu X; Xu A; Wang M; Xie B; Huang E; Deng F; Wei S Int J Nanomedicine; 2015; 10():7109-28. PubMed ID: 26604759 [TBL] [Abstract][Full Text] [Related]
18. Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Xu T; Miszuk JM; Zhao Y; Sun H; Fong H Adv Healthc Mater; 2015 Oct; 4(15):2238-46. PubMed ID: 26332611 [TBL] [Abstract][Full Text] [Related]
19. Nano/microscale topographically designed alginate/PCL scaffolds for inducing myoblast alignment and myogenic differentiation. Yeo M; Kim G Carbohydr Polym; 2019 Nov; 223():115041. PubMed ID: 31427026 [TBL] [Abstract][Full Text] [Related]
20. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Wang J; Yu X Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]