These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26328387)

  • 1. Carbon Nanotube Composite Electrode Coated with Polypyrrole for Microbial Fuel Cell Application.
    Roh SH; Woo HG
    J Nanosci Nanotechnol; 2015 Jan; 15(1):484-7. PubMed ID: 26328387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Layer-by-layer self-assembled carbon nanotube electrode for microbial fuel cells application.
    Roh SH
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4158-61. PubMed ID: 23862465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified conductive polyaniline-carbon nanotube composite electrodes for bioelectricity generation and waste remediation.
    Yellappa M; Sravan JS; Sarkar O; Reddy YVR; Mohan SV
    Bioresour Technol; 2019 Jul; 284():148-154. PubMed ID: 30928826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a new type of three-dimensional honeycomb-structure anode in microbial electrochemical systems for energy harvesting and pollutant removal.
    Li J; Chen D; Liu G; Li D; Tian Y; Feng Y
    Water Res; 2022 Jun; 218():118429. PubMed ID: 35483206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells.
    Feng C; Ma L; Li F; Mai H; Lang X; Fan S
    Biosens Bioelectron; 2010 Feb; 25(6):1516-20. PubMed ID: 19889528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiwalled carbon nanotube/polyarcylonitrile composite as anode material for microbial fuel cells application.
    Kim SI; Roh SH
    J Nanosci Nanotechnol; 2010 May; 10(5):3271-4. PubMed ID: 20358937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electricity Generation from Microbial Fuel Cell with Polypyrrole-Coated Carbon Nanofiber Composite.
    Roh SH
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1700-3. PubMed ID: 26353717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and application of polypyrrole/carrageenan nano-bio composite as a cathode catalyst in microbial fuel cells.
    Esmaeili C; Ghasemi M; Heng LY; Hassan SHA; Abdi MM; Daud WRW; Ilbeygi H; Ismail AF
    Carbohydr Polym; 2014 Dec; 114():253-259. PubMed ID: 25263889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directly-Grown Hierarchical Carbon Nanotube@Polypyrrole Core-Shell Hybrid for High-Performance Flexible Supercapacitors.
    Yesi Y; Shown I; Ganguly A; Ngo TT; Chen LC; Chen KH
    ChemSusChem; 2016 Feb; 9(4):370-8. PubMed ID: 26791424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ synthesis of polypyrrole on graphite felt as bio-anode to enhance the start-up performance of microbial fuel cells.
    Pu KB; Lu CX; Zhang K; Zhang H; Chen QY; Wang YH
    Bioprocess Biosyst Eng; 2020 Mar; 43(3):429-437. PubMed ID: 31679050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of cell-embedding reduced graphene oxide/ polypyrrole hydrogel as efficient anode for high-performance microbial fuel cell.
    Kirubaharan CJ; Wang JW; Abbas SZ; Shah SB; Zhang Y; Wang JX; Yong YC
    Chemosphere; 2023 Jun; 326():138413. PubMed ID: 36925003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction and performance evaluation of mediator-less microbial fuel cell using carbon nanotubes as an anode material.
    Roh SH; Kim SI
    J Nanosci Nanotechnol; 2012 May; 12(5):4252-5. PubMed ID: 22852384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polydopamine/polypyrrole-modified graphite felt enhances biocompatibility for electroactive bacteria and power density of microbial fuel cell.
    Kim M; Li S; Kong DS; Song YE; Park SY; Kim HI; Jae J; Chung I; Kim JR
    Chemosphere; 2023 Feb; 313():137388. PubMed ID: 36455658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns.
    Yang J; Cheng S; Sun Y; Li C
    Biotechnol Lett; 2017 Oct; 39(10):1515-1520. PubMed ID: 28664313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells.
    Xie X; Hu L; Pasta M; Wells GF; Kong D; Criddle CS; Cui Y
    Nano Lett; 2011 Jan; 11(1):291-6. PubMed ID: 21158405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells.
    Liang P; Wang H; Xia X; Huang X; Mo Y; Cao X; Fan M
    Biosens Bioelectron; 2011 Feb; 26(6):3000-4. PubMed ID: 21190836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Employing a Flexible and Low-Cost Polypyrrole Nanotube Membrane as an Anode to Enhance Current Generation in Microbial Fuel Cells.
    Zhao CE; Wu J; Kjelleberg S; Loo JS; Zhang Q
    Small; 2015 Jul; 11(28):3440-3. PubMed ID: 25828694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial electroactivity and viability depends on the carbon nanotube-coated sponge anode used in a microbial fuel cell.
    Ma H; Xia T; Bian C; Sun H; Liu Z; Wu C; Wang X; Xu P
    Bioelectrochemistry; 2018 Aug; 122():26-31. PubMed ID: 29518621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anode modification with capacitive materials for a microbial fuel cell: an increase in transient power or stationary power.
    Feng C; Lv Z; Yang X; Wei C
    Phys Chem Chem Phys; 2014 Jun; 16(22):10464-72. PubMed ID: 24728040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material.
    Kalathil S; Van Nguyen H; Shim JJ; Khan MM; Lee J; Cho MH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7712-6. PubMed ID: 24245320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.