These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 26328387)
61. A shriveled rectangular carbon tube with the concave surface for high-performance enzymatic glucose/O Kang Z; Job Zhang YP; Zhu Z Biosens Bioelectron; 2019 May; 132():76-83. PubMed ID: 30856430 [TBL] [Abstract][Full Text] [Related]
62. The Influence of Active Carbon Supports Toward the Electrocatalytic Behavior of Fe3O4 Nanoparticles for the Extended Energy Generation of Mediatorless Microbial Fuel Cells. Park IH; Kim P; Gnana Kumar G; Nahm KS Appl Biochem Biotechnol; 2016 Aug; 179(7):1170-83. PubMed ID: 27038051 [TBL] [Abstract][Full Text] [Related]
63. Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells. Yu YY; Chen HL; Yong YC; Kim DH; Song H Chem Commun (Camb); 2011 Dec; 47(48):12825-7. PubMed ID: 22048750 [TBL] [Abstract][Full Text] [Related]
64. MnCo Tahir K; Miran W; Jang J; Maile N; Shahzad A; Moztahida M; Ghani AA; Kim B; Lee DS Chemosphere; 2021 Feb; 265():129098. PubMed ID: 33272661 [TBL] [Abstract][Full Text] [Related]
65. Nanostructured polypyrrole-coated anode for sun-powered microbial fuel cells. Zou Y; Pisciotta J; Baskakov IV Bioelectrochemistry; 2010 Aug; 79(1):50-6. PubMed ID: 19969509 [TBL] [Abstract][Full Text] [Related]
66. Electrochemical preparation and application of PANI/MWNT and PPy/MWNT composite anodes for anaerobic fluidized bed microbial fuel cell. Jia Y; Ma D; Wang X 3 Biotech; 2020 Jan; 10(1):3. PubMed ID: 31824814 [TBL] [Abstract][Full Text] [Related]
67. Enhanced bioelectricity generation and azo dye treatment in a reversible photo-bioelectrochemical cell by using novel anthraquinone-2,6-disulfonate (AQDS)/MnO Sun J; Cai B; Xu W; Huang Y; Zhang Y; Peng Y; Chang K; Kuo J; Chen K; Ning X; Liu G; Wang Y; Yang Z; Liu J Bioresour Technol; 2017 Feb; 225():40-47. PubMed ID: 27875767 [TBL] [Abstract][Full Text] [Related]
68. Electrically controlled anion exchange based on polypyrrole and carbon nanotubes nanocomposite for perchlorate removal. Lin Y; Cui X; Bontha J Environ Sci Technol; 2006 Jun; 40(12):4004-9. PubMed ID: 16830574 [TBL] [Abstract][Full Text] [Related]
69. Efficient degradation of indole by microbial fuel cell based Fe Jian M; Xue P; Shi K; Li R; Ma L; Li P J Hazard Mater; 2020 Apr; 388():122123. PubMed ID: 31972431 [TBL] [Abstract][Full Text] [Related]
70. Composite of medium-chain-length polyhydroxyalkanoates-co-methyl acrylate and carbon nanotubes as innovative electrodes modifier in microbial fuel cell. Sirajudeen AAO; Annuar MSM; Subramaniam R Biotechnol Appl Biochem; 2021 Apr; 68(2):307-318. PubMed ID: 32314420 [TBL] [Abstract][Full Text] [Related]
71. E-DNA sensor of Mycobacterium tuberculosis based on electrochemical assembly of nanomaterials (MWCNTs/PPy/PAMAM). Miodek A; Mejri N; Gomgnimbou M; Sola C; Korri-Youssoufi H Anal Chem; 2015 Sep; 87(18):9257-64. PubMed ID: 26313137 [TBL] [Abstract][Full Text] [Related]
72. Bioelectrodes based on pseudocapacitive cellulose/polypyrrole composite improve performance of biofuel cell. Kizling M; Stolarczyk K; Tammela P; Wang Z; Nyholm L; Golimowski J; Bilewicz R Bioelectrochemistry; 2016 Dec; 112():184-90. PubMed ID: 26936112 [TBL] [Abstract][Full Text] [Related]
73. Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. Li Y; Wang P; Wang L; Lin X Biosens Bioelectron; 2007 Jun; 22(12):3120-5. PubMed ID: 17350819 [TBL] [Abstract][Full Text] [Related]
74. Building electrode with three-dimensional macroporous interface from biocompatible polypyrrole and conductive graphene nanosheets to achieve highly efficient microbial electrocatalysis. Yang L; Yi G; Hou Y; Cheng H; Luo X; Pavlostathis SG; Luo S; Wang A Biosens Bioelectron; 2019 Sep; 141():111444. PubMed ID: 31226603 [TBL] [Abstract][Full Text] [Related]
76. Advances in the development of electrode materials for improving the reactor kinetics in microbial fuel cells. Agrahari R; Bayar B; Abubackar HN; Giri BS; Rene ER; Rani R Chemosphere; 2022 Mar; 290():133184. PubMed ID: 34890618 [TBL] [Abstract][Full Text] [Related]
77. Highly durable anodes of microbial fuel cells using a reduced graphene oxide/carbon nanotube-coated scaffold. Chou HT; Lee HJ; Lee CY; Tai NH; Chang HY Bioresour Technol; 2014 Oct; 169():532-536. PubMed ID: 25089894 [TBL] [Abstract][Full Text] [Related]
78. Recent Progress of Nanostructure Modified Anodes in Microbial Fuel Cells. Kim M; Kim HW; Nam JY; In SI J Nanosci Nanotechnol; 2015 Sep; 15(9):6891-9. PubMed ID: 26716261 [TBL] [Abstract][Full Text] [Related]
79. Hierarchically Three-Dimensional Nanofiber Based Textile with High Conductivity and Biocompatibility As a Microbial Fuel Cell Anode. Tao Y; Liu Q; Chen J; Wang B; Wang Y; Liu K; Li M; Jiang H; Lu Z; Wang D Environ Sci Technol; 2016 Jul; 50(14):7889-95. PubMed ID: 27294591 [TBL] [Abstract][Full Text] [Related]
80. Nickel ferrite/MXene-coated carbon felt anodes for enhanced microbial fuel cell performance. Tahir K; Miran W; Jang J; Maile N; Shahzad A; Moztahida M; Ghani AA; Kim B; Jeon H; Lim SR; Lee DS Chemosphere; 2021 Apr; 268():128784. PubMed ID: 33131741 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]