BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26328428)

  • 1. Fabrication and Localized Surface Plasmon Properties of Triangular Gold Nanowell Arrays in a Glass Substrate.
    Jung B; Frey W
    J Nanosci Nanotechnol; 2015 Jan; 15(1):688-92. PubMed ID: 26328428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The facile fabrication of tunable plasmonic gold nanostructure arrays using microwave plasma.
    Hsu CY; Huang JW; Gwo S; Lin KJ
    Nanotechnology; 2010 Jan; 21(3):035302. PubMed ID: 19966400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasi-3D Plasmonic Nanowell Array for Molecular Enrichment and SERS-Based Detection.
    Kim S; Mun C; Choi DG; Jung HS; Kim DH; Kim SH; Park SG
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32422860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-fidelity optofluidic on-chip sensors using well-defined gold nanowell crystals.
    Lee SY; Kim SH; Jang SG; Heo CJ; Shim JW; Yang SM
    Anal Chem; 2011 Dec; 83(23):9174-80. PubMed ID: 22017272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
    Pang JS; Theodorou IG; Centeno A; Petrov PK; Alford NM; Ryan MP; Xie F
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23083-23092. PubMed ID: 31252484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Au Nanoparticle Arrays on Flexible Substrate for Tunable Localized Surface Plasmon Resonance.
    Tang Z; Wu J; Yu X; Hong R; Zu X; Lin X; Luo H; Lin W; Yi G
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9281-9288. PubMed ID: 33587614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Liquid-Phase Plasmonic Sensor Platforms for Prospective Biomedical Applications.
    Sayin S; Zhou Y; Wang S; Acosta Rodriguez A; Zaghloul M
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructure shape effects on response of plasmonic aptamer sensors.
    Balamurugan S; Mayer KM; Lee S; Soper SA; Hafner JH; Spivak DA
    J Mol Recognit; 2013 Sep; 26(9):402-7. PubMed ID: 23836467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced localized plasmonic detections using partially-embedded gold nanoparticles and ellipsometric measurements.
    Moirangthem RS; Yaseen MT; Wei PK; Cheng JY; Chang YC
    Biomed Opt Express; 2012 May; 3(5):899-910. PubMed ID: 22567583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graded nanowell arrays: a fine plasmonic "library" with an adjustable spectral range.
    Xue P; Ye S; Su H; Wang S; Nan J; Chen X; Ruan W; Zhang J; Cui Z; Yang B
    Nanoscale; 2017 May; 9(20):6724-6733. PubMed ID: 28485438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Au-Ag nanobowl arrays for size-selective plasmonic biosensing.
    Jana D; Lehnhoff E; Bruzas I; Robinson J; Lum W; Sagle L
    Analyst; 2016 Aug; 141(16):4870-8. PubMed ID: 27111025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrathin gold-shell coated silver nanoparticles onto a glass platform for improvement of plasmonic sensors.
    Dong P; Lin Y; Deng J; Di J
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2392-9. PubMed ID: 23477284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backward-scattering-based Localized Surface Plasmon Resonance Sensors with Gold Nanospheres and Nanoshells.
    Kawawaki T; Shinjo N; Tatsuma T
    Anal Sci; 2016; 32(3):271-4. PubMed ID: 26960604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization of gold nanoparticles on glass surface with polydopamine thin film for reliable LSPR sensing.
    Chen H; Zhao L; Chen D; Hu W
    J Colloid Interface Sci; 2015 Dec; 460():258-63. PubMed ID: 26343978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors.
    Chen CY; Wang JY; Tsai FJ; Lu YC; Kiang YW; Yang CC
    Opt Express; 2009 Aug; 17(16):14186-98. PubMed ID: 19654830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond Direct Laser-Induced Assembly of Monolayer of Gold Nanostructures with Tunable Surface Plasmon Resonance and High Performance Localized Surface Plasmon Resonance and Surface Enhanced Raman Scattering Sensing.
    Jradi S; Zaarour L; Chehadi Z; Akil S; Plain J
    Langmuir; 2018 Dec; 34(51):15763-15772. PubMed ID: 30481036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cup-Shaped Nanoantenna Arrays for Zeptoliter Volume Biochemistry and Plasmonic Sensing in the Visible Wavelength Range.
    Drevinskas R; Rakickas T; Selskis A; Rosa L; Valiokas RN
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19082-19091. PubMed ID: 28523911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing.
    Otte MA; Sepúlveda B; Ni W; Juste JP; Liz-Marzán LM; Lechuga LM
    ACS Nano; 2010 Jan; 4(1):349-57. PubMed ID: 19947647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.