These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 26328701)
1. Effect of a resistive load on the starting performance of a standing wave thermoacoustic engine: A numerical study. Ma L; Weisman C; Baltean-Carlès D; Delbende I; Bauwens L J Acoust Soc Am; 2015 Aug; 138(2):847-57. PubMed ID: 26328701 [TBL] [Abstract][Full Text] [Related]
2. Low Mach number analysis of idealized thermoacoustic engines with numerical solution. Hireche O; Weisman C; Baltean-Carlès D; Le Quéré P; Bauwens L J Acoust Soc Am; 2010 Dec; 128(6):3438-48. PubMed ID: 21218877 [TBL] [Abstract][Full Text] [Related]
3. Experimental study of the influence of different resonators on thermoacoustic conversion performance of a thermoacoustic-Stirling heat engine. Luo EC; Ling H; Dai W; Yu GY Ultrasonics; 2006 Dec; 44 Suppl 1():e1507-9. PubMed ID: 16996100 [TBL] [Abstract][Full Text] [Related]
4. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers. de Jong JA; Wijnant YH; de Boer A J Acoust Soc Am; 2014 Mar; 135(3):1149-58. PubMed ID: 24606258 [TBL] [Abstract][Full Text] [Related]
5. Measurements of the impedance matrix of a thermoacoustic core: applications to the design of thermoacoustic engines. Bannwart FC; Penelet G; Lotton P; Dalmont JP J Acoust Soc Am; 2013 May; 133(5):2650-60. PubMed ID: 23654373 [TBL] [Abstract][Full Text] [Related]
6. A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine. Ling H; Luo E; Dai W Ultrasonics; 2006 Dec; 44 Suppl 1():e1511-4. PubMed ID: 16996099 [TBL] [Abstract][Full Text] [Related]
7. Characteristic-based non-linear simulation of large-scale standing-wave thermoacoustic engine. Abd El-Rahman AI; Abdel-Rahman E J Acoust Soc Am; 2014 Aug; 136(2):649-58. PubMed ID: 25096100 [TBL] [Abstract][Full Text] [Related]
8. Modeling of thermoacoustic systems using the nonlinear frequency domain method. de Jong JA; Wijnant YH; Wilcox D; de Boer A J Acoust Soc Am; 2015 Sep; 138(3):1241-52. PubMed ID: 26428763 [TBL] [Abstract][Full Text] [Related]
9. Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine. Luo EC; Dai W; Zhang Y; Ling H Ultrasonics; 2006 Dec; 44 Suppl 1():e1531-3. PubMed ID: 16979679 [TBL] [Abstract][Full Text] [Related]
10. Operation map of a traveling-wave thermoacoustic electric generator with variable resistive-capacitive electric loads. Ibrahim AH; Elbeltagy K; Ramadan I; Ismail OA; Serag-Eldin MA; Abdel-Rahman E J Acoust Soc Am; 2024 Sep; 156(3):1757-1768. PubMed ID: 39283154 [TBL] [Abstract][Full Text] [Related]
11. Thermoacoustic power conversion using a piezoelectric transducer. Jensen C; Raspet R J Acoust Soc Am; 2010 Jul; 128(1):98-103. PubMed ID: 20649205 [TBL] [Abstract][Full Text] [Related]
12. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators. Antao DS; Farouk B J Acoust Soc Am; 2013 Aug; 134(2):917-32. PubMed ID: 23927091 [TBL] [Abstract][Full Text] [Related]
13. Condensation in a steady-flow thermoacoustic refrigerator. Hiller RA; Swift GW J Acoust Soc Am; 2000 Oct; 108(4):1521-7. PubMed ID: 11051479 [TBL] [Abstract][Full Text] [Related]
14. Influence of resonance tube geometry shape on performance of thermoacoustic engine. Bao R; Chen G; Tang K; Jia Z; Cao W Ultrasonics; 2006 Dec; 44 Suppl 1():e1519-21. PubMed ID: 17056084 [TBL] [Abstract][Full Text] [Related]
15. Experimental and numerical investigation of standing-wave thermoacoustic instability under transcritical temperature conditions. Martinez A; Migliorino MT; Scalo C; Heister SD J Acoust Soc Am; 2021 Oct; 150(4):2900. PubMed ID: 34717461 [TBL] [Abstract][Full Text] [Related]
16. Open cycle traveling wave thermoacoustics: mean temperature difference at the regenerator interface. Weiland NT; Zinn BT J Acoust Soc Am; 2003 Nov; 114(5):2791-8. PubMed ID: 14650014 [TBL] [Abstract][Full Text] [Related]
18. Measurements of acoustic particle velocity in a coaxial duct and its application to a traveling-wave thermoacoustic heat engine. Morii J; Biwa T; Yazaki T Rev Sci Instrum; 2014 Sep; 85(9):094902. PubMed ID: 25273759 [TBL] [Abstract][Full Text] [Related]
19. Measurement of acoustic output power in a traveling wave engine. Miwa M; Sumi T; Biwa T; Ueda Y; Yazaki T Ultrasonics; 2006 Dec; 44 Suppl 1():e1527-9. PubMed ID: 16996552 [TBL] [Abstract][Full Text] [Related]
20. Transient characteristics and stability analysis of standing wave thermoacoustic-piezoelectric harvesters. Nouh M; Aldraihem O; Baz A J Acoust Soc Am; 2014 Feb; 135(2):669-78. PubMed ID: 25234876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]