These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 26328847)
21. Anharmonic force field and vibrational dynamics of CH2F2 up to 5000 cm(-1) studied by Fourier transform infrared spectroscopy and state-of-the-art ab initio calculations. Tasinato N; Regini G; Stoppa P; Pietropolli Charmet A; Gambi A J Chem Phys; 2012 Jun; 136(21):214302. PubMed ID: 22697538 [TBL] [Abstract][Full Text] [Related]
22. Full-Dimensional Quantum Calculations of Vibrational Levels of NH4(+) and Isotopomers on An Accurate Ab Initio Potential Energy Surface. Yu HG; Han H; Guo H J Phys Chem A; 2016 Apr; 120(14):2185-93. PubMed ID: 27023376 [TBL] [Abstract][Full Text] [Related]
23. Pruning the Hamiltonian Matrix in MULTIMODE: Test for C2H4 and Application to CH3NO2 Using a New Ab Initio Potential Energy Surface. Wang X; Carter S; Bowman JM J Phys Chem A; 2015 Nov; 119(47):11632-40. PubMed ID: 26529348 [TBL] [Abstract][Full Text] [Related]
24. Full-dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. I. Hamiltonian setup and analysis of the ground vibrational state. Vendrell O; Gatti F; Lauvergnat D; Meyer HD J Chem Phys; 2007 Nov; 127(18):184302. PubMed ID: 18020634 [TBL] [Abstract][Full Text] [Related]
25. A new ab initio potential-energy surface of HO2(X2A") and quantum studies of HO2 vibrational spectrum and rate constants for the H + O2 <--> O + OH reactions. Xu C; Xie D; Zhang DH; Lin SY; Guo H J Chem Phys; 2005 Jun; 122(24):244305. PubMed ID: 16035755 [TBL] [Abstract][Full Text] [Related]
26. Communication: MULTIMODE calculations of low-lying vibrational states of NO3 using an adiabatic potential energy surface. Homayoon Z; Bowman JM J Chem Phys; 2014 Oct; 141(16):161104. PubMed ID: 25362265 [TBL] [Abstract][Full Text] [Related]
27. Full-dimensional multi configuration time dependent Hartree calculations of the ground and vibrationally excited states of He2,3Br2 clusters. Valdés A; Prosmiti R; Villarreal P; Delgado-Barrio G J Chem Phys; 2011 Aug; 135(5):054303. PubMed ID: 21823696 [TBL] [Abstract][Full Text] [Related]
28. MCTDH study on vibrational states of the CO/Cu(100) system. Meng Q; Meyer HD J Chem Phys; 2013 Oct; 139(16):164709. PubMed ID: 24182066 [TBL] [Abstract][Full Text] [Related]
29. Photodissociation of methyl iodide embedded in a host-guest complex: a full dimensional (189D) quantum dynamics study of CH3I@resorc[4]arene. Westermann T; Brodbeck R; Rozhenko AB; Schoeller W; Manthe U J Chem Phys; 2011 Nov; 135(18):184102. PubMed ID: 22088047 [TBL] [Abstract][Full Text] [Related]
30. Resonances of HCO Computed Using an Approach Based on the Multiconfiguration Time-Dependent Hartree Method. Ndengué SA; Dawes R; Gatti F; Meyer HD J Phys Chem A; 2015 Dec; 119(50):12043-51. PubMed ID: 26070014 [TBL] [Abstract][Full Text] [Related]
31. An ab initio potential energy surface and vibrational energy levels of ZnH2. Huang ZG; Yu L; Dai YM J Comput Chem; 2010 Apr; 31(5):986-93. PubMed ID: 19670227 [TBL] [Abstract][Full Text] [Related]
32. Implementation of an iterative algorithm for optimal control of molecular dynamics into MCTDH. Schröder M; Carreón-Macedo JL; Brown A Phys Chem Chem Phys; 2008 Feb; 10(6):850-6. PubMed ID: 18231688 [TBL] [Abstract][Full Text] [Related]
33. Highly accurate potential-energy and dipole moment surfaces for vibrational state calculations of methane. Oyanagi C; Yagi K; Taketsugu T; Hirao K J Chem Phys; 2006 Feb; 124(6):64311. PubMed ID: 16483211 [TBL] [Abstract][Full Text] [Related]
34. Accurate quantum dynamics calculations of vibrational spectrum of dideuteromethane CH2D2. Yu HG J Chem Phys; 2015 May; 142(19):194307. PubMed ID: 26001461 [TBL] [Abstract][Full Text] [Related]
35. Full-dimensional MCTDH/MGPF study of the ground and lowest lying vibrational states of the bihydroxide H3O2(-) complex. Peláez D; Sadri K; Meyer HD Spectrochim Acta A Mol Biomol Spectrosc; 2014 Feb; 119():42-51. PubMed ID: 23831046 [TBL] [Abstract][Full Text] [Related]
36. Direct kinetic measurements of reactions between the simplest Criegee intermediate CH2OO and alkenes. Buras ZJ; Elsamra RM; Jalan A; Middaugh JE; Green WH J Phys Chem A; 2014 Mar; 118(11):1997-2006. PubMed ID: 24559303 [TBL] [Abstract][Full Text] [Related]
37. Infrared absorption spectrum of the simplest Criegee intermediate CH2OO. Su YT; Huang YH; Witek HA; Lee YP Science; 2013 Apr; 340(6129):174-6. PubMed ID: 23580523 [TBL] [Abstract][Full Text] [Related]
38. Systematically expanding nondirect product bases within the pruned multi-configuration time-dependent Hartree (MCTDH) method: A comparison with multi-layer MCTDH. Wodraszka R; Carrington T J Chem Phys; 2017 May; 146(19):194105. PubMed ID: 28527461 [TBL] [Abstract][Full Text] [Related]
39. Stabilization of the Simplest Criegee Intermediate from the Reaction between Ozone and Ethylene: A High-Level Quantum Chemical and Kinetic Analysis of Ozonolysis. Nguyen TL; Lee H; Matthews DA; McCarthy MC; Stanton JF J Phys Chem A; 2015 Jun; 119(22):5524-33. PubMed ID: 25945650 [TBL] [Abstract][Full Text] [Related]
40. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization. Han H; Li A; Guo H J Chem Phys; 2014 Dec; 141(24):244312. PubMed ID: 25554156 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]