These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 26329148)

  • 1. Engineering fluidic delays in paper-based devices using laser direct-writing.
    He PJ; Katis IN; Eason RW; Sones CL
    Lab Chip; 2015 Oct; 15(20):4054-61. PubMed ID: 26329148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser direct-write for fabrication of three-dimensional paper-based devices.
    He PJ; Katis IN; Eason RW; Sones CL
    Lab Chip; 2016 Aug; 16(17):3296-303. PubMed ID: 27436100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-induced photo-polymerisation for creation of paper-based fluidic devices.
    Sones CL; Katis IN; He PJ; Mills B; Namiq MF; Shardlow P; Ibsen M; Eason RW
    Lab Chip; 2014 Dec; 14(23):4567-74. PubMed ID: 25286149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-based patterning for fluidic devices in nitrocellulose.
    He PJ; Katis IN; Eason RW; Sones CL
    Biomicrofluidics; 2015 Mar; 9(2):026503. PubMed ID: 26015836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programming fluid transport in paper-based microfluidic devices using razor-crafted open channels.
    Giokas DL; Tsogas GZ; Vlessidis AG
    Anal Chem; 2014 Jul; 86(13):6202-7. PubMed ID: 24915155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitatively controllable fluid flows with ballpoint-pen-printed patterns for programmable photo-paper-based microfluidic devices.
    Soum V; Park S; Brilian AI; Choi JY; Lee Y; Kim W; Kwon OS; Shin K
    Lab Chip; 2020 May; 20(9):1601-1611. PubMed ID: 32249884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method.
    Thompson BL; Ouyang Y; Duarte GR; Carrilho E; Krauss ST; Landers JP
    Nat Protoc; 2015 Jun; 10(6):875-86. PubMed ID: 25974096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-cost, high-throughput fabrication of cloth-based microfluidic devices using a photolithographical patterning technique.
    Wu P; Zhang C
    Lab Chip; 2015 Mar; 15(6):1598-608. PubMed ID: 25656508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices.
    Nie J; Liang Y; Zhang Y; Le S; Li D; Zhang S
    Analyst; 2013 Jan; 138(2):671-6. PubMed ID: 23183392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved sensitivity and limit-of-detection of lateral flow devices using spatial constrictions of the flow-path.
    Katis IN; He PJW; Eason RW; Sones CL
    Biosens Bioelectron; 2018 Aug; 113():95-100. PubMed ID: 29738945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics.
    Lutz B; Liang T; Fu E; Ramachandran S; Kauffman P; Yager P
    Lab Chip; 2013 Jul; 13(14):2840-7. PubMed ID: 23685876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-induced selective wax reflow for paper-based microfluidics.
    Zhang Y; Liu J; Wang H; Fan Y
    RSC Adv; 2019 Apr; 9(20):11460-11464. PubMed ID: 35520212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paper and toner three-dimensional fluidic devices: programming fluid flow to improve point-of-care diagnostics.
    Schilling KM; Jauregui D; Martinez AW
    Lab Chip; 2013 Feb; 13(4):628-31. PubMed ID: 23282766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modifying Wicking Speeds in Paper-Based Microfluidic Devices by Laser-Etching.
    Kalish B; Tan MK; Tsutsui H
    Micromachines (Basel); 2020 Aug; 11(8):. PubMed ID: 32823829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creating compact and microscale features in paper-based devices by laser cutting.
    Mahmud MA; Blondeel EJ; Kaddoura M; MacDonald BD
    Analyst; 2016 Nov; 141(23):6449-6454. PubMed ID: 27792224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable assembly of silver nanoparticles induced by femtosecond laser direct writing.
    Wang H; Liu S; Zhang YL; Wang JN; Wang L; Xia H; Chen QD; Ding H; Sun HB
    Sci Technol Adv Mater; 2015 Apr; 16(2):024805. PubMed ID: 27877766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrofluidics fabricated by space-selective metallization in glass microfluidic structures using femtosecond laser direct writing.
    Xu J; Wu D; Hanada Y; Chen C; Wu S; Cheng Y; Sugioka K; Midorikawa K
    Lab Chip; 2013 Dec; 13(23):4608-16. PubMed ID: 24104603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Multiplexed Detection on Lateral-Flow Devices Using a Laser Direct-Write Technique.
    He PJW; Katis IN; Eason RW; Sones CL
    Biosensors (Basel); 2018 Oct; 8(4):. PubMed ID: 30347807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Miniaturized Paper-Based Microfluidic Devices (MicroPADs).
    Strong EB; Schultz SA; Martinez AW; Martinez NW
    Sci Rep; 2019 Jan; 9(1):7. PubMed ID: 30626903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.