These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26329202)

  • 1. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation.
    Kocun M; Labuda A; Gannepalli A; Proksch R
    Rev Sci Instrum; 2015 Aug; 86(8):083706. PubMed ID: 26329202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Contact Resonance Force Microscopy for Viscoelastic Measurement of Soft Materials at the Solid-Liquid Interface.
    Churnside AB; Tung RC; Killgore JP
    Langmuir; 2015 Oct; 31(40):11143-9. PubMed ID: 26426705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic property mapping with contact resonance force microscopy.
    Killgore JP; Yablon DG; Tsou AH; Gannepalli A; Yuya PA; Turner JA; Proksch R; Hurley DC
    Langmuir; 2011 Dec; 27(23):13983-7. PubMed ID: 22054300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High efficiency laser photothermal excitation of microcantilever vibrations in air and liquids.
    Kiracofe D; Kobayashi K; Labuda A; Raman A; Yamada H
    Rev Sci Instrum; 2011 Jan; 82(1):013702. PubMed ID: 21280832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photothermal excitation setup for a modified commercial atomic force microscope.
    Adam H; Rode S; Schreiber M; Kobayashi K; Yamada H; Kühnle A
    Rev Sci Instrum; 2014 Feb; 85(2):023703. PubMed ID: 24593367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wideband low-noise optical beam deflection sensor with photothermal excitation for liquid-environment atomic force microscopy.
    Fukuma T
    Rev Sci Instrum; 2009 Feb; 80(2):023707. PubMed ID: 19256653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative force and dissipation measurements in liquids using piezo-excited atomic force microscopy: a unifying theory.
    Kiracofe D; Raman A
    Nanotechnology; 2011 Dec; 22(48):485502. PubMed ID: 22071495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retrofitting an atomic force microscope with photothermal excitation for a clean cantilever response in low Q environments.
    Labuda A; Kobayashi K; Miyahara Y; Grütter P
    Rev Sci Instrum; 2012 May; 83(5):053703. PubMed ID: 22667621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing local bias-induced transitions using photothermal excitation contact resonance atomic force microscopy and voltage spectroscopy.
    Li Q; Jesse S; Tselev A; Collins L; Yu P; Kravchenko I; Kalinin SV; Balke N
    ACS Nano; 2015 Feb; 9(2):1848-57. PubMed ID: 25559112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing nano-scale viscoelastic response in air and in liquid with dynamic atomic force microscopy.
    Crippa F; Thorén PA; Forchheimer D; Borgani R; Rothen-Rutishauser B; Petri-Fink A; Haviland DB
    Soft Matter; 2018 May; 14(19):3998-4006. PubMed ID: 29740651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced sensitivity of nanoscale subsurface imaging by photothermal excitation in atomic force microscopy.
    Yip K; Cui T; Filleter T
    Rev Sci Instrum; 2020 Jun; 91(6):063703. PubMed ID: 32611036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual resonance excitation system for the contact mode of atomic force microscopy.
    Kopycinska-Müller M; Striegler A; Schlegel R; Kuzeyeva N; Köhler B; Wolter KJ
    Rev Sci Instrum; 2012 Apr; 83(4):043703. PubMed ID: 22559535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic-resolution imaging in liquid by frequency modulation atomic force microscopy using small cantilevers with megahertz-order resonance frequencies.
    Fukuma T; Onishi K; Kobayashi N; Matsuki A; Asakawa H
    Nanotechnology; 2012 Apr; 23(13):135706. PubMed ID: 22421199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cutting down the forest of peaks in acoustic dynamic atomic force microscopy in liquid.
    Carrasco C; Ares P; de Pablo PJ; Gómez-Herrero J
    Rev Sci Instrum; 2008 Dec; 79(12):126106. PubMed ID: 19123597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft-contact imaging in liquid with frequency-modulation torsion resonance mode atomic force microscopy.
    Yang CW; Hwang IS
    Nanotechnology; 2010 Feb; 21(6):065710. PubMed ID: 20057020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linearizing the frequency-stiffness relation in contact resonance atomic force microscopy for facilitated mechanical characterization.
    Wang W; Zhang W; Chen Y
    Microsc Res Tech; 2022 Jun; 85(6):2123-2130. PubMed ID: 35122360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wide cantilever stiffness range cavity optomechanical sensors for atomic force microscopy.
    Liu Y; Miao H; Aksyuk V; Srinivasan K
    Opt Express; 2012 Jul; 20(16):18268-80. PubMed ID: 23038376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photothermal excitation and laser Doppler velocimetry of higher cantilever vibration modes for dynamic atomic force microscopy in liquid.
    Nishida S; Kobayashi D; Sakurada T; Nakazawa T; Hoshi Y; Kawakatsu H
    Rev Sci Instrum; 2008 Dec; 79(12):123703. PubMed ID: 19123565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of frequency noise and frequency shift by phase shifting elements in frequency modulation atomic force microscopy.
    Kobayashi K; Yamada H; Matsushige K
    Rev Sci Instrum; 2011 Mar; 82(3):033702. PubMed ID: 21456746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subsurface imaging of flexible circuits via contact resonance atomic force microscopy.
    Wang W; Ma C; Chen Y; Zheng L; Liu H; Chu J
    Beilstein J Nanotechnol; 2019; 10():1636-1647. PubMed ID: 31467825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.