These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26329213)

  • 21. Mirror Coating Solution for the Cryogenic Einstein Telescope.
    Craig K; Steinlechner J; Murray PG; Bell AS; Birney R; Haughian K; Hough J; MacLaren I; Penn S; Reid S; Robie R; Rowan S; Martin IW
    Phys Rev Lett; 2019 Jun; 122(23):231102. PubMed ID: 31298875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal noise and mechanical loss of SiO
    Robinson JM; Oelker E; Milner WR; Kedar D; Zhang W; Legero T; Matei DG; Häfner S; Riehle F; Sterr U; Ye J
    Opt Lett; 2021 Feb; 46(3):592-595. PubMed ID: 33528416
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stabilized high-power laser system for the gravitational wave detector advanced LIGO.
    Kwee P; Bogan C; Danzmann K; Frede M; Kim H; King P; Pöld J; Puncken O; Savage RL; Seifert F; Wessels P; Winkelmann L; Willke B
    Opt Express; 2012 May; 20(10):10617-34. PubMed ID: 22565688
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the room temperature payload prototype for the cryogenic interferometric gravitational wave detector KAGRA.
    Peña Arellano FE; Sekiguchi T; Fujii Y; Takahashi R; Barton M; Hirata N; Shoda A; van Heijningen J; Flaminio R; DeSalvo R; Okutumi K; Akutsu T; Aso Y; Ishizaki H; Ohishi N; Yamamoto K; Uchiyama T; Miyakawa O; Kamiizumi M; Takamori A; Majorana E; Agatsuma K; Hennes E; van den Brand J; Bertolini A
    Rev Sci Instrum; 2016 Mar; 87(3):034501. PubMed ID: 27036793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distributed state machine supervision for long-baseline gravitational-wave detectors.
    Rollins JG
    Rev Sci Instrum; 2016 Sep; 87(9):094502. PubMed ID: 27782540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gravitational-wave stochastic background from cosmic strings.
    Siemens X; Mandic V; Creighton J
    Phys Rev Lett; 2007 Mar; 98(11):111101. PubMed ID: 17501038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterizing transient noise in the LIGO detectors.
    Nuttall LK;
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High dynamic range thermally actuated bimorph mirror for gravitational wave detectors.
    Cao HT; Brooks A; Ng SWS; Ottaway D; Perreca A; Richardson JW; Chaderjian A; Veitch PJ
    Appl Opt; 2020 Mar; 59(9):2784-2790. PubMed ID: 32225844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Angular instability due to radiation pressure in the LIGO gravitational-wave detector.
    Hirose E; Kawabe K; Sigg D; Adhikari R; Saulson PR
    Appl Opt; 2010 Jun; 49(18):3474-84. PubMed ID: 20563200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unsupervised learning architecture for classifying the transient noise of interferometric gravitational-wave detectors.
    Sakai Y; Itoh Y; Jung P; Kokeyama K; Kozakai C; Nakahira KT; Oshino S; Shikano Y; Takahashi H; Uchiyama T; Ueshima G; Washimi T; Yamamoto T; Yokozawa T
    Sci Rep; 2022 Jun; 12(1):9935. PubMed ID: 35705623
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensing and control in dual-recycling laser interferometer gravitational-wave detectors.
    Strain KA; Müller G; Delker T; Reitze DH; Tanner DB; Mason JE; Willems PA; Shaddock DA; Gray MB; Mow-Lowry C; McClelland DE
    Appl Opt; 2003 Mar; 42(7):1244-56. PubMed ID: 12638882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A step-wise steerable source of illumination for low-noise "Violin-Mode" shadow sensors, intended for use in interferometric gravitational wave detectors.
    Lockerbie NA; Tokmakov KV
    Rev Sci Instrum; 2016 Jan; 87(1):015001. PubMed ID: 26827344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mirrors used in the LIGO interferometers for first detection of gravitational waves.
    Pinard L; Michel C; Sassolas B; Balzarini L; Degallaix J; Dolique V; Flaminio R; Forest D; Granata M; Lagrange B; Straniero N; Teillon J; Cagnoli G
    Appl Opt; 2017 Feb; 56(4):C11-C15. PubMed ID: 28158044
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing the Bandwidth of Gravitational-Wave Detectors with Unstable Optomechanical Filters.
    Miao H; Ma Y; Zhao C; Chen Y
    Phys Rev Lett; 2015 Nov; 115(21):211104. PubMed ID: 26636839
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Narrowing the filter-cavity bandwidth in gravitational-wave detectors via optomechanical interaction.
    Ma Y; Danilishin SL; Zhao C; Miao H; Korth WZ; Chen Y; Ward RL; Blair DG
    Phys Rev Lett; 2014 Oct; 113(15):151102. PubMed ID: 25375698
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light.
    Dwyer S; Barsotti L; Chua SS; Evans M; Factourovich M; Gustafson D; Isogai T; Kawabe K; Khalaidovski A; Lam PK; Landry M; Mavalvala N; McClelland DE; Meadors GD; Mow-Lowry CM; Schnabel R; Schofield RM; Smith-Lefebvre N; Stefszky M; Vorvick C; Sigg D
    Opt Express; 2013 Aug; 21(16):19047-60. PubMed ID: 23938820
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advanced technologies for future ground-based, laser-interferometric gravitational wave detectors.
    Hammond G; Hild S; Pitkin M
    J Mod Opt; 2014 Dec; 61(sup1):S10-S45. PubMed ID: 25705087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Implications of Dedicated Seismometer Measurements on Newtonian-Noise Cancellation for Advanced LIGO.
    Coughlin MW; Harms J; Driggers J; McManus DJ; Mukund N; Ross MP; Slagmolen BJJ; Venkateswara K
    Phys Rev Lett; 2018 Nov; 121(22):221104. PubMed ID: 30547651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectral phase noise analysis of a cryogenically cooled Ti:Sapphire amplifier.
    Nagymihaly RS; Jojart P; Borzsonyi A; Osvay K
    Opt Express; 2017 Mar; 25(6):6690-6699. PubMed ID: 28381013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microstructure, Mechanical and Wear Behaviour of Deep Cryogenically Treated EN 52 Silchrome Valve Steel.
    Saranraj I; Ganesan S; Čepová L; Elangovan M; Beránek L
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.