These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26329326)

  • 1. Geo-material microfluidics at reservoir conditions for subsurface energy resource applications.
    Porter ML; Jiménez-Martínez J; Martinez R; McCulloch Q; Carey JW; Viswanathan HS
    Lab Chip; 2015 Oct; 15(20):4044-53. PubMed ID: 26329326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment.
    Singh R; Sivaguru M; Fried GA; Fouke BW; Sanford RA; Carrera M; Werth CJ
    J Contam Hydrol; 2017 Sep; 204():28-39. PubMed ID: 28802767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High pressure-elevated temperature x-ray micro-computed tomography for subsurface applications.
    Iglauer S; Lebedev M
    Adv Colloid Interface Sci; 2018 Jun; 256():393-410. PubMed ID: 29526246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chip-off-the-old-rock: the study of reservoir-relevant geological processes with real-rock micromodels.
    Song W; de Haas TW; Fadaei H; Sinton D
    Lab Chip; 2014 Nov; 14(22):4382-90. PubMed ID: 25236399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding hydraulic fracturing: a multi-scale problem.
    Hyman JD; Jiménez-Martínez J; Viswanathan HS; Carey JW; Porter ML; Rougier E; Karra S; Kang Q; Frash L; Chen L; Lei Z; O'Malley D; Makedonska N
    Philos Trans A Math Phys Eng Sci; 2016 Oct; 374(2078):. PubMed ID: 27597789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real structure micromodels based on reservoir rocks for enhanced oil recovery (EOR) applications.
    Gaol CL; Wegner J; Ganzer L
    Lab Chip; 2020 Jun; 20(12):2197-2208. PubMed ID: 32426764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Fabrication Techniques for High-Pressure Testing of Microscale Supercritical CO2 Foam Transport in Fractured Unconventional Reservoirs.
    Hosseini H; Guo F; Barati Ghahfarokhi R; Aryana SA
    J Vis Exp; 2020 Jul; (161):. PubMed ID: 32716371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward Reservoir-on-a-Chip: Fabricating Reservoir Micromodels by in Situ Growing Calcium Carbonate Nanocrystals in Microfluidic Channels.
    Wang W; Chang S; Gizzatov A
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29380-29386. PubMed ID: 28792207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creation of a dual-porosity and dual-depth micromodel for the study of multiphase flow in complex porous media.
    Yun W; Ross CM; Roman S; Kovscek AR
    Lab Chip; 2017 Apr; 17(8):1462-1474. PubMed ID: 28294224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 2.5-D glass micromodel for investigation of multi-phase flow in porous media.
    Xu K; Liang T; Zhu P; Qi P; Lu J; Huh C; Balhoff M
    Lab Chip; 2017 Feb; 17(4):640-646. PubMed ID: 28157240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore-scale studies of spontaneous imbibition into oil-saturated porous media.
    Hatiboglu CU; Babadagli T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066311. PubMed ID: 18643375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of Microfluidic Devices and Imaging Techniques for Fluid Flow Study in Porous Geomaterials.
    Jahanbakhsh A; Wlodarczyk KL; Hand DP; Maier RRJ; Maroto-Valer MM
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32698501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalization of micromodels with kaolinite for investigation of low salinity oil-recovery processes.
    Song W; Kovscek AR
    Lab Chip; 2015 Aug; 15(16):3314-25. PubMed ID: 26151880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Model Porous Media: Fabrication and Applications.
    Anbari A; Chien HT; Datta SS; Deng W; Weitz DA; Fan J
    Small; 2018 May; 14(18):e1703575. PubMed ID: 29527809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro X-ray fluorescence reveals pore space details and spatially-resolved porosity of rock-based microfluidic devices.
    Frouté L; Guan KM; Yun W; Lewis SJY; Stripe BD; Yang X; Lapene A; Kovscek AR; Creux P
    Lab Chip; 2023 Sep; 23(18):3978-3988. PubMed ID: 37591813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of CO
    Nooraiepour M; Fazeli H; Miri R; Hellevang H
    Environ Sci Technol; 2018 May; 52(10):6050-6060. PubMed ID: 29683654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Western Australia basalt-CO
    Al-Yaseri A; Ali M; Ali M; Taheri R; Wolff-Boenisch D
    J Colloid Interface Sci; 2021 Dec; 603():165-171. PubMed ID: 34186394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material Processing.
    Owusu-Ansah E; Dalton C
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33291290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore-scale Imaging and Characterization of Hydrocarbon Reservoir Rock Wettability at Subsurface Conditions Using X-ray Microtomography.
    Alhammadi AM; AlRatrout A; Bijeljic B; Blunt MJ
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30394374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wettability of rock/CO
    Arif M; Abu-Khamsin SA; Iglauer S
    Adv Colloid Interface Sci; 2019 Jun; 268():91-113. PubMed ID: 30999164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.