BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 26329918)

  • 1. The effects of different sensory augmentation on weight-shifting balance exercises in Parkinson's disease and healthy elderly people: a proof-of-concept study.
    Lee BC; Thrasher TA; Fisher SP; Layne CS
    J Neuroeng Rehabil; 2015 Sep; 12():75. PubMed ID: 26329918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effects of Coding Schemes on Vibrotactile Biofeedback for Dynamic Balance Training in Parkinson's Disease and Healthy Elderly Individuals.
    Lee BC; Fung A; Thrasher TA
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):153-160. PubMed ID: 29053448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Usability and Validation of the Smarter Balance System: An Unsupervised Dynamic Balance Exercises System for Individuals With Parkinson's Disease.
    Fung A; Lai EC; Lee BC
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):798-806. PubMed ID: 29641384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determining the preferred modality for real-time biofeedback during balance training.
    Bechly KE; Carender WJ; Myles JD; Sienko KH
    Gait Posture; 2013 Mar; 37(3):391-6. PubMed ID: 23022157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performing Dynamic Weight-Shifting Balance Exercises With a Smartphone-Based Wearable Telerehabilitation System for Home Use by Individuals With Parkinson's Disease: A Proof-of-Concept Study.
    Lee BC; An J; Kim J; Lai EC
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():456-463. PubMed ID: 36455080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of long-term balance training with vibrotactile sensory augmentation among community-dwelling healthy older adults: a randomized preliminary study.
    Bao T; Carender WJ; Kinnaird C; Barone VJ; Peethambaran G; Whitney SL; Kabeto M; Seidler RD; Sienko KH
    J Neuroeng Rehabil; 2018 Jan; 15(1):5. PubMed ID: 29347946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of vibrotactile biofeedback training on trunk sway in Parkinson's disease patients.
    Nanhoe-Mahabier W; Allum JH; Pasman EP; Overeem S; Bloem BR
    Parkinsonism Relat Disord; 2012 Nov; 18(9):1017-21. PubMed ID: 22721975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Configurable, wearable sensing and vibrotactile feedback system for real-time postural balance and gait training: proof-of-concept.
    Xu J; Bao T; Lee UH; Kinnaird C; Carender W; Huang Y; Sienko KH; Shull PB
    J Neuroeng Rehabil; 2017 Oct; 14(1):102. PubMed ID: 29020959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell phone based balance trainer.
    Lee BC; Kim J; Chen S; Sienko KH
    J Neuroeng Rehabil; 2012 Feb; 9():10. PubMed ID: 22316167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a visual biofeedback on the postural control in Parkinson's disease.
    Caudron S; Guerraz M; Eusebio A; Gros JP; Azulay JP; Vaugoyeau M
    Neurophysiol Clin; 2014 Jan; 44(1):77-86. PubMed ID: 24502908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable Sensor-Based Biofeedback Training for Balance and Gait in Parkinson Disease: A Pilot Randomized Controlled Trial.
    Carpinella I; Cattaneo D; Bonora G; Bowman T; Martina L; Montesano A; Ferrarin M
    Arch Phys Med Rehabil; 2017 Apr; 98(4):622-630.e3. PubMed ID: 27965005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of actuator selection on non-volitional postural responses to torso-based vibrotactile stimulation.
    Lee BC; Martin BJ; Sienko KH
    J Neuroeng Rehabil; 2013 Feb; 10():21. PubMed ID: 23406013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of vibrotactile biofeedback of trunk sway on balance control in multiple sclerosis.
    van der Logt RP; Findling O; Rust H; Yaldizli O; Allum JH
    Mult Scler Relat Disord; 2016 Jul; 8():58-63. PubMed ID: 27456875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrotactile display coding for a balance prosthesis.
    Kadkade PP; Benda BJ; Schmidt PB; Wall C
    IEEE Trans Neural Syst Rehabil Eng; 2003 Dec; 11(4):392-9. PubMed ID: 14960115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrotactile Feedback Alters Dynamics Of Static Postural Control In Persons With Parkinson's Disease But Not Older Adults At High Fall Risk.
    High CM; McHugh HF; Mills SC; Amano S; Freund JE; Vallabhajosula S
    Gait Posture; 2018 Jun; 63():202-207. PubMed ID: 29772496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel balance training system using multimodal biofeedback.
    Afzal MR; Oh MK; Choi HY; Yoon J
    Biomed Eng Online; 2016 Apr; 15():42. PubMed ID: 27103536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Vibrotactile and Plantar Force Measurement-Based Biofeedback System: Paving the Way towards Wearable Balance-Improving Devices.
    Ma CZ; Wan AH; Wong DW; Zheng YP; Lee WC
    Sensors (Basel); 2015 Dec; 15(12):31709-22. PubMed ID: 26694399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of visual biofeedback and inherent stability on trunk postural control.
    Goodworth A; Kratzer A; Saavedra S
    Gait Posture; 2020 Jul; 80():308-314. PubMed ID: 32590252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the effects of visual biofeedback therapy on recovery of postural balance in stroke patients using a complexity measure.
    Ghomashchi H
    Top Stroke Rehabil; 2016 Jun; 23(3):178-83. PubMed ID: 27077976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofeedback improves postural control recovery from multi-axis discrete perturbations.
    Sienko KH; Balkwill MD; Wall C
    J Neuroeng Rehabil; 2012 Aug; 9():53. PubMed ID: 22863399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.