BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 26330083)

  • 1. Exploring the cellular basis of human disease through a large-scale mapping of deleterious genes to cell types.
    Cornish AJ; Filippis I; David A; Sternberg MJ
    Genome Med; 2015 Sep; 7(1):95. PubMed ID: 26330083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records.
    Jiang L; Edwards SM; Thomsen B; Workman CT; Guldbrandtsen B; Sørensen P
    BMC Bioinformatics; 2014 Sep; 15(1):315. PubMed ID: 25253562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Text Mining Genotype-Phenotype Relationships from Biomedical Literature for Database Curation and Precision Medicine.
    Singhal A; Simmons M; Lu Z
    PLoS Comput Biol; 2016 Nov; 12(11):e1005017. PubMed ID: 27902695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathway networks generated from human disease phenome.
    Cirincione AG; Clark KL; Kann MG
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):75. PubMed ID: 30255817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DISEASES: text mining and data integration of disease-gene associations.
    Pletscher-Frankild S; Pallejà A; Tsafou K; Binder JX; Jensen LJ
    Methods; 2015 Mar; 74():83-9. PubMed ID: 25484339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous Network Edge Prediction: A Data Integration Approach to Prioritize Disease-Associated Genes.
    Himmelstein DS; Baranzini SE
    PLoS Comput Biol; 2015 Jul; 11(7):e1004259. PubMed ID: 26158728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene co-expression in the interactome: moving from correlation toward causation via an integrated approach to disease module discovery.
    Paci P; Fiscon G; Conte F; Wang RS; Farina L; Loscalzo J
    NPJ Syst Biol Appl; 2021 Jan; 7(1):3. PubMed ID: 33479222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network-based prediction and knowledge mining of disease genes.
    Carson MB; Lu H
    BMC Med Genomics; 2015; 8 Suppl 2(Suppl 2):S9. PubMed ID: 26043920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of human tissue interactomes reveals factors leading to tissue-specific manifestation of hereditary diseases.
    Barshir R; Shwartz O; Smoly IY; Yeger-Lotem E
    PLoS Comput Biol; 2014 Jun; 10(6):e1003632. PubMed ID: 24921629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking rare and common disease: mapping clinical disease-phenotypes to ontologies in therapeutic target validation.
    Sarntivijai S; Vasant D; Jupp S; Saunders G; Bento AP; Gonzalez D; Betts J; Hasan S; Koscielny G; Dunham I; Parkinson H; Malone J
    J Biomed Semantics; 2016; 7():8. PubMed ID: 27011785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting disease genes based on semi-supervised learning and protein-protein interaction networks.
    Nguyen TP; Ho TB
    Artif Intell Med; 2012 Jan; 54(1):63-71. PubMed ID: 22000346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Literature mining, gene-set enrichment and pathway analysis for target identification in Behçet's disease.
    Wilson P; Larminie C; Smith R
    Clin Exp Rheumatol; 2016; 34(6 Suppl 102):101-110. PubMed ID: 27791955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mining kidney toxicogenomic data by using gene co-expression modules.
    AbdulHameed MD; Ippolito DL; Stallings JD; Wallqvist A
    BMC Genomics; 2016 Oct; 17(1):790. PubMed ID: 27724849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of text- and data-mining using ontologies successfully selects disease gene candidates.
    Tiffin N; Kelso JF; Powell AR; Pan H; Bajic VB; Hide WA
    Nucleic Acids Res; 2005; 33(5):1544-52. PubMed ID: 15767279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactome of the hepatitis C virus: Literature mining with ANDSystem.
    Saik OV; Ivanisenko TV; Demenkov PS; Ivanisenko VA
    Virus Res; 2016 Jun; 218():40-8. PubMed ID: 26673098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Text-mined phenotype annotation and vector-based similarity to improve identification of similar phenotypes and causative genes in monogenic disease patients.
    Saklatvala JR; Dand N; Simpson MA
    Hum Mutat; 2018 May; 39(5):643-652. PubMed ID: 29460986
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.