BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 26330267)

  • 1. A computational framework for the prioritization of disease-gene candidates.
    Browne F; Wang H; Zheng H
    BMC Genomics; 2015; 16 Suppl 9(Suppl 9):S2. PubMed ID: 26330267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic convergence and network analysis approach to identify candidate genes in Alzheimer's disease.
    Talwar P; Silla Y; Grover S; Gupta M; Agarwal R; Kushwaha S; Kukreti R
    BMC Genomics; 2014 Mar; 15(1):199. PubMed ID: 24628925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational studies on Alzheimer's disease associated pathways and regulatory patterns using microarray gene expression and network data: revealed association with aging and other diseases.
    Panigrahi PP; Singh TR
    J Theor Biol; 2013 Oct; 334():109-21. PubMed ID: 23811083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating network, sequence and functional features using machine learning approaches towards identification of novel Alzheimer genes.
    Jamal S; Goyal S; Shanker A; Grover A
    BMC Genomics; 2016 Oct; 17(1):807. PubMed ID: 27756223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization.
    Guney E; Oliva B
    PLoS One; 2012; 7(9):e43557. PubMed ID: 23028459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated analysis of differential gene expression profiles in hippocampi to identify candidate genes involved in Alzheimer's disease.
    Hu W; Lin X; Chen K
    Mol Med Rep; 2015 Nov; 12(5):6679-87. PubMed ID: 26324066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards integrative gene prioritization in Alzheimer's disease.
    Lee JH; Gonzalez GH
    Pac Symp Biocomput; 2011; ():4-13. PubMed ID: 21121028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HybridRanker: Integrating network topology and biomedical knowledge to prioritize cancer candidate genes.
    Razaghi-Moghadam Z; Abdollahi R; Goliaei S; Ebrahimi M
    J Biomed Inform; 2016 Dec; 64():139-146. PubMed ID: 27725293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential hippocampal genes and pathways involved in Alzheimer's disease: a bioinformatic analysis.
    Zhang L; Guo XQ; Chu JF; Zhang X; Yan ZR; Li YZ
    Genet Mol Res; 2015 Jun; 14(2):7218-32. PubMed ID: 26125932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prioritization of potential candidate disease genes by topological similarity of protein-protein interaction network and phenotype data.
    Luo J; Liang S
    J Biomed Inform; 2015 Feb; 53():229-36. PubMed ID: 25460206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Genetics Analysis of Molecular Pathogenesis for Alzheimer's Disease.
    Lin G; Ji K; Li S; Ma W; Pan X
    Eur Neurol; 2020; 83(5):458-467. PubMed ID: 33027797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A methodology based on molecular interactions and pathways to find candidate genes associated to diseases: its application to schizophrenia and Alzheimer's disease.
    Ochagavía ME; Miranda J; Nazábal M; Martin A; Novoa LI; Bringas R; Fernández-DE-Cossío J; Camacho H
    J Bioinform Comput Biol; 2011 Aug; 9(4):541-57. PubMed ID: 21776608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ProSim: A Method for Prioritizing Disease Genes Based on Protein Proximity and Disease Similarity.
    Ganegoda GU; Sheng Y; Wang J
    Biomed Res Int; 2015; 2015():213750. PubMed ID: 26339594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of an immunorelated protein-protein interaction network for clarifying the mechanism of burn.
    Gao Y; Nai W; Yang L; Lu Z; Shi P; Jin H; Wen H; Wang G
    Burns; 2016 Mar; 42(2):405-13. PubMed ID: 26739088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards understanding brain-gut-microbiome connections in Alzheimer's disease.
    Xu R; Wang Q
    BMC Syst Biol; 2016 Aug; 10 Suppl 3(Suppl 3):63. PubMed ID: 27585440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prioritization of candidate disease genes by combining topological similarity and semantic similarity.
    Liu B; Jin M; Zeng P
    J Biomed Inform; 2015 Oct; 57():1-5. PubMed ID: 26173039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical Strategy to Prioritize Alzheimer's Disease Candidate Genes in Gene Regulatory Networks Using Public Expression Data.
    Kawalia SB; Raschka T; Naz M; de Matos Simoes R; Senger P; Hofmann-Apitius M
    J Alzheimers Dis; 2017; 59(4):1237-1254. PubMed ID: 28800327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities.
    da Rocha EL; Ung CY; McGehee CD; Correia C; Li H
    Nucleic Acids Res; 2016 Jun; 44(10):e100. PubMed ID: 26975659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide haplotype association study identify TNFRSF1A, CASP7, LRP1B, CDH1 and TG genes associated with Alzheimer's disease in Caribbean Hispanic individuals.
    Shang Z; Lv H; Zhang M; Duan L; Wang S; Li J; Liu G; Ruijie Z; Jiang Y
    Oncotarget; 2015 Dec; 6(40):42504-14. PubMed ID: 26621834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.