These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 26330332)
1. Inhibition of sodium-independent and sodium-dependent nucleobase transport activities by tyrosine kinase inhibitors. Damaraju VL; Kuzma M; Cass CE; Sawyer MB Cancer Chemother Pharmacol; 2015 Nov; 76(5):1093-8. PubMed ID: 26330332 [TBL] [Abstract][Full Text] [Related]
2. TKI combination therapy: strategy to enhance dasatinib uptake by inhibiting Pgp- and BCRP-mediated efflux. D'Cunha R; Bae S; Murry DJ; An G Biopharm Drug Dispos; 2016 Oct; 37(7):397-408. PubMed ID: 27418107 [TBL] [Abstract][Full Text] [Related]
3. Effect of tyrosine kinase inhibitors on renal handling of creatinine by MATE1. Omote S; Matsuoka N; Arakawa H; Nakanishi T; Tamai I Sci Rep; 2018 Jun; 8(1):9237. PubMed ID: 29915248 [TBL] [Abstract][Full Text] [Related]
4. High affinity sodium-dependent nucleobase transport in cultured renal epithelial cells (LLC-PK1). Griffith DA; Jarvis SM J Biol Chem; 1993 Sep; 268(27):20085-90. PubMed ID: 8376366 [TBL] [Abstract][Full Text] [Related]
5. Comparative in vitro evaluation of transportability and toxicity of capecitabine and its metabolites in cells derived from normal human kidney and renal cancers. Damaraju VL; Mowles D; Wilson M; Kuzma M; Cass CE; Sawyer MB Biochem Cell Biol; 2013 Dec; 91(6):419-27. PubMed ID: 24219283 [TBL] [Abstract][Full Text] [Related]
6. Nucleobase transport in opossum kidney epithelial cells and Xenopus laevis oocytes: the characterisation, structure-activity relationship of uracil analogues and oocyte expression studies of sodium-dependent and -independent hypoxanthine uptake. Shayeghi M; Akerman R; Jarvis SM Biochim Biophys Acta; 1999 Jan; 1416(1-2):109-18. PubMed ID: 9889340 [TBL] [Abstract][Full Text] [Related]
7. Interactions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins. Minematsu T; Giacomini KM Mol Cancer Ther; 2011 Mar; 10(3):531-9. PubMed ID: 21252289 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the transcellular transport of FDG and D-glucose by the kidney epithelial cell line, LLC-PK1. Kobayashi M; Shikano N; Nishii R; Kiyono Y; Araki H; Nishi K; Oh M; Okudaira H; Ogura M; Yoshimoto M; Okazawa H; Fujibayashi Y; Kawai K Nucl Med Commun; 2010 Feb; 31(2):141-6. PubMed ID: 19949354 [TBL] [Abstract][Full Text] [Related]
9. Regulation of nucleobase transport in LLC-PK1 renal epithelia by protein kinase C. Griffith DA; Jarvis SM Biochim Biophys Acta; 1996 Oct; 1284(2):213-20. PubMed ID: 8914586 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of sodium-dependent transport systems in LLC-PK1 cells by metabolites of ifosfamide. Mohrmann M; Pauli A; Ritzer M; Schönfeld B; Seifert B; Brandis M Ren Physiol Biochem; 1992; 15(6):289-301. PubMed ID: 1282722 [TBL] [Abstract][Full Text] [Related]
11. Tyrosine kinase inhibitors - a review on pharmacology, metabolism and side effects. Hartmann JT; Haap M; Kopp HG; Lipp HP Curr Drug Metab; 2009 Jun; 10(5):470-81. PubMed ID: 19689244 [TBL] [Abstract][Full Text] [Related]
12. Tyrosine kinase inhibitors noncompetitively inhibit MCT8-mediated iodothyronine transport. Braun D; Kim TD; le Coutre P; Köhrle J; Hershman JM; Schweizer U J Clin Endocrinol Metab; 2012 Jan; 97(1):E100-5. PubMed ID: 22031512 [TBL] [Abstract][Full Text] [Related]
13. Mercury uptake by LLC-PK1 cells: dependence on temperature and membrane potential. Endo T; Kimura O; Sakata M; Shaikh ZA Toxicol Appl Pharmacol; 1997 Oct; 146(2):294-8. PubMed ID: 9344897 [TBL] [Abstract][Full Text] [Related]
15. Clinical pharmacokinetics of tyrosine kinase inhibitors. van Erp NP; Gelderblom H; Guchelaar HJ Cancer Treat Rev; 2009 Dec; 35(8):692-706. PubMed ID: 19733976 [TBL] [Abstract][Full Text] [Related]
16. Determination of drug synergism between the tyrosine kinase inhibitors NSC 680410 (adaphostin) and/or STI571 (imatinib mesylate, Gleevec) with cytotoxic drugs against human leukemia cell lines. Avramis IA; Laug WE; Sausville EA; Avramis VI Cancer Chemother Pharmacol; 2003 Oct; 52(4):307-18. PubMed ID: 12827297 [TBL] [Abstract][Full Text] [Related]
17. Cellular uptake properties of oligonucleotides in LLC-PK1 renal epithelial cells. Takakura Y; Oka Y; Hashida M Antisense Nucleic Acid Drug Dev; 1998 Feb; 8(1):67-73. PubMed ID: 9512098 [TBL] [Abstract][Full Text] [Related]
18. Tyrosine kinase inhibitors as modulators of ATP binding cassette multidrug transporters: substrates, chemosensitizers or inducers of acquired multidrug resistance? Brózik A; Hegedüs C; Erdei Z; Hegedus T; Özvegy-Laczka C; Szakács G; Sarkadi B Expert Opin Drug Metab Toxicol; 2011 May; 7(5):623-42. PubMed ID: 21410427 [TBL] [Abstract][Full Text] [Related]
19. Development of a high-performance liquid chromatographic-mass spectrometric method for the determination of cellular levels of the tyrosine kinase inhibitors lapatinib and dasatinib. Roche S; McMahon G; Clynes M; O'Connor R J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Dec; 877(31):3982-90. PubMed ID: 19854117 [TBL] [Abstract][Full Text] [Related]
20. Characterization of novel Na+-dependent nucleobase transport systems at the blood-testis barrier. Kato R; Maeda T; Akaike T; Tamai I Am J Physiol Endocrinol Metab; 2006 May; 290(5):E968-75. PubMed ID: 16368787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]