These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 2633039)
1. [Chromosomal proteins in chick embryo erythrocytes on transcriptionally active and inactive genes]. Postnikov IuV; Shik VV; Beliavskiĭ AV; Brodolin KL; Khrapko KR; Nikol'skaia TA; Mirzabekov AD Mol Biol (Mosk); 1989; 23(6):1682-91. PubMed ID: 2633039 [TBL] [Abstract][Full Text] [Related]
2. Distribution of high mobility group proteins 1/2, E and 14/17 and linker histones H1 and H5 on transcribed and non-transcribed regions of chicken erythrocyte chromatin. Postnikov YV; Shick VV; Belyavsky AV; Khrapko KR; Brodolin KL; Nikolskaya TA; Mirzabekov AD Nucleic Acids Res; 1991 Feb; 19(4):717-25. PubMed ID: 2017359 [TBL] [Abstract][Full Text] [Related]
3. Chromosomal mapping of core histone acetylation by immunoselection. Crane-Robinson C; Hebbes TR; Clayton AL; Thorne AW Methods; 1997 May; 12(1):48-56. PubMed ID: 9169194 [TBL] [Abstract][Full Text] [Related]
4. [Structure of the transcription-active chromatin]. Preobrazhenskaia OV; Karpov VL; Nagorskaia TV; Mirzabekov AD Mol Biol (Mosk); 1984; 18(1):8-20. PubMed ID: 6423969 [TBL] [Abstract][Full Text] [Related]
5. Gene-specific differences in the aflatoxin B1 adduction of chicken erythrocyte chromatin. Delcuve GP; Moyer R; Bailey G; Davie JR Cancer Res; 1988 Dec; 48(24 Pt 1):7146-9. PubMed ID: 3142684 [TBL] [Abstract][Full Text] [Related]
6. A direct link between core histone acetylation and transcriptionally active chromatin. Hebbes TR; Thorne AW; Crane-Robinson C EMBO J; 1988 May; 7(5):1395-402. PubMed ID: 3409869 [TBL] [Abstract][Full Text] [Related]
7. Structural and functional properties of linker histones and high mobility group proteins in polytene chromosomes. Wiśniewski JR; Grossbach U Int J Dev Biol; 1996 Feb; 40(1):177-87. PubMed ID: 8735927 [TBL] [Abstract][Full Text] [Related]
8. [The structure of nucleosomal core particles located on the transcribed genome regions]. Studitskiĭ VM; Beliavskiĭ AV; Mel'nikova AF; Mirzabekov AD Mol Biol (Mosk); 1988; 22(3):706-17. PubMed ID: 3141777 [TBL] [Abstract][Full Text] [Related]
9. [Mechanism of formation of associated oligonucleosomes during electrophoresis]. Spirin KS; Grigor'ev SA; Krasheninnikov IA Mol Biol (Mosk); 1988; 22(6):1530-8. PubMed ID: 3252149 [TBL] [Abstract][Full Text] [Related]
10. [Structural state of active and inactive genes during chromatin decondensation]. Kukushkin AN; Svetlikova SB; Pospelov VA Mol Biol (Mosk); 1988; 22(4):955-67. PubMed ID: 3185536 [TBL] [Abstract][Full Text] [Related]
11. [Localization of regions of DNA attachment to the nuclear skeleton within chicken alpha-globin genes in functionally active and functionally inactive nuclei]. Razin SV; Rzeszowska-Wolny J; Moreau J; Scherrer K Mol Biol (Mosk); 1985; 19(2):456-66. PubMed ID: 2987668 [TBL] [Abstract][Full Text] [Related]
12. Chromatin structure of erythroid-specific genes of immature and mature chicken erythrocytes. Delcuve GP; Davie JR Biochem J; 1989 Oct; 263(1):179-86. PubMed ID: 2604693 [TBL] [Abstract][Full Text] [Related]
13. The effect of salt extraction on the structure of transcriptionally active genes; evidence for a DNAseI-sensitive structure which could be dependent on chromatin structure at levels higher than the 30 nm fibre. Goodwin GH; Nicolas RH; Cockerill PN; Zavou S; Wright CA Nucleic Acids Res; 1985 May; 13(10):3561-79. PubMed ID: 4011436 [TBL] [Abstract][Full Text] [Related]
14. [The effect of differences in the structure of transcription-active and inactive chromatin by a DNP electrophoresis method]. Spirin KS; Grigor'ev SA; Krashennikov IA Dokl Akad Nauk SSSR; 1988; 300(2):490-3. PubMed ID: 3168733 [No Abstract] [Full Text] [Related]
15. Chromatin domains and regulation of gene expression: familiar and enigmatic clusters of chicken globin genes. Recillas-Targa F; Razin SV Crit Rev Eukaryot Gene Expr; 2001; 11(1-3):227-42. PubMed ID: 11693962 [TBL] [Abstract][Full Text] [Related]
16. Linker histones versus HMG1/2: a struggle for dominance? Zlatanova J; van Holde K Bioessays; 1998 Jul; 20(7):584-8. PubMed ID: 9723008 [TBL] [Abstract][Full Text] [Related]
17. Isolation and separation of HMG proteins and histones H1 and H5 and core histones by column chromatography on phosphocellulose. Garg LC; Reeck GR Protein Expr Purif; 1998 Nov; 14(2):155-9. PubMed ID: 9790876 [TBL] [Abstract][Full Text] [Related]
18. The high mobility group proteins HMG 14 and 17, do not prevent the formation of chromatin higher order structure. McGhee JD; Rau DC; Felsenfeld G Nucleic Acids Res; 1982 Mar; 10(6):2007-16. PubMed ID: 6210881 [TBL] [Abstract][Full Text] [Related]
19. [DNA-bound proteins mediate attachment to the nuclear skeleton of transcriptionally active DNA fraction]. Razin SV; Bandt D; Razina MV; Chernokhvostov VV Mol Biol (Mosk); 1987; 21(5):1276-85. PubMed ID: 3683372 [TBL] [Abstract][Full Text] [Related]
20. The footprint of chromosomal proteins HMG-14 and HMG-17 on chromatin subunits. Alfonso PJ; Crippa MP; Hayes JJ; Bustin M J Mol Biol; 1994 Feb; 236(1):189-98. PubMed ID: 8107104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]