These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 26330515)
1. Function of the CRISPR-Cas System of the Human Pathogen Clostridium difficile. Boudry P; Semenova E; Monot M; Datsenko KA; Lopatina A; Sekulovic O; Ospina-Bedoya M; Fortier LC; Severinov K; Dupuy B; Soutourina O mBio; 2015 Sep; 6(5):e01112-15. PubMed ID: 26330515 [TBL] [Abstract][Full Text] [Related]
3. Using an Endogenous CRISPR-Cas System for Genome Editing in the Human Pathogen Clostridium difficile. Maikova A; Kreis V; Boutserin A; Severinov K; Soutourina O Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31399410 [TBL] [Abstract][Full Text] [Related]
4. Discovery of new type I toxin-antitoxin systems adjacent to CRISPR arrays in Clostridium difficile. Maikova A; Peltier J; Boudry P; Hajnsdorf E; Kint N; Monot M; Poquet I; Martin-Verstraete I; Dupuy B; Soutourina O Nucleic Acids Res; 2018 May; 46(9):4733-4751. PubMed ID: 29529286 [TBL] [Abstract][Full Text] [Related]
5. New Insights Into Functions and Possible Applications of Maikova A; Severinov K; Soutourina O Front Microbiol; 2018; 9():1740. PubMed ID: 30108577 [TBL] [Abstract][Full Text] [Related]
6. Abundant and diverse clustered regularly interspaced short palindromic repeat spacers in Clostridium difficile strains and prophages target multiple phage types within this pathogen. Hargreaves KR; Flores CO; Lawley TD; Clokie MR mBio; 2014 Aug; 5(5):e01045-13. PubMed ID: 25161187 [TBL] [Abstract][Full Text] [Related]
7. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae. Ostria-Hernández ML; Sánchez-Vallejo CJ; Ibarra JA; Castro-Escarpulli G BMC Res Notes; 2015 Aug; 8():332. PubMed ID: 26238567 [TBL] [Abstract][Full Text] [Related]
8. Functional Analysis of Porphyromonas gingivalis W83 CRISPR-Cas Systems. Burmistrz M; Dudek B; Staniec D; Rodriguez Martinez JI; Bochtler M; Potempa J; Pyrc K J Bacteriol; 2015 Aug; 197(16):2631-41. PubMed ID: 26013482 [TBL] [Abstract][Full Text] [Related]
9. Genome engineering of Clostridium difficile using the CRISPR-Cas9 system. Wang S; Hong W; Dong S; Zhang ZT; Zhang J; Wang L; Wang Y Clin Microbiol Infect; 2018 Oct; 24(10):1095-1099. PubMed ID: 29604353 [TBL] [Abstract][Full Text] [Related]
10. On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires. Silas S; Makarova KS; Shmakov S; Páez-Espino D; Mohr G; Liu Y; Davison M; Roux S; Krishnamurthy SR; Fu BXH; Hansen LL; Wang D; Sullivan MB; Millard A; Clokie MR; Bhaya D; Lambowitz AM; Kyrpides NC; Koonin EV; Fire AZ mBio; 2017 Jul; 8(4):. PubMed ID: 28698278 [TBL] [Abstract][Full Text] [Related]
11. Identification of an anti-CRISPR protein that inhibits the CRISPR-Cas type I-B system in Muzyukina P; Shkaruta A; Guzman NM; Andreani J; Borges AL; Bondy-Denomy J; Maikova A; Semenova E; Severinov K; Soutourina O mSphere; 2023 Dec; 8(6):e0040123. PubMed ID: 38009936 [No Abstract] [Full Text] [Related]
12. Multiplexed CRISPR-Cpf1-Mediated Genome Editing in Clostridium difficile toward the Understanding of Pathogenesis of C. difficile Infection. Hong W; Zhang J; Cui G; Wang L; Wang Y ACS Synth Biol; 2018 Jun; 7(6):1588-1600. PubMed ID: 29863336 [TBL] [Abstract][Full Text] [Related]
13. Functional Analysis of Bacteriophage Immunity through a Type I-E CRISPR-Cas System in Vibrio cholerae and Its Application in Bacteriophage Genome Engineering. Box AM; McGuffie MJ; O'Hara BJ; Seed KD J Bacteriol; 2016 Feb; 198(3):578-90. PubMed ID: 26598368 [TBL] [Abstract][Full Text] [Related]
14. Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems. Silas S; Lucas-Elio P; Jackson SA; Aroca-Crevillén A; Hansen LL; Fineran PC; Fire AZ; Sánchez-Amat A Elife; 2017 Aug; 6():. PubMed ID: 28826484 [TBL] [Abstract][Full Text] [Related]
15. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. Gomaa AA; Klumpe HE; Luo ML; Selle K; Barrangou R; Beisel CL mBio; 2014 Jan; 5(1):e00928-13. PubMed ID: 24473129 [TBL] [Abstract][Full Text] [Related]
16. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes. Plagens A; Richter H; Charpentier E; Randau L FEMS Microbiol Rev; 2015 May; 39(3):442-63. PubMed ID: 25934119 [TBL] [Abstract][Full Text] [Related]
17. Presence of Type I-F CRISPR/Cas systems is associated with antimicrobial susceptibility in Escherichia coli. Aydin S; Personne Y; Newire E; Laverick R; Russell O; Roberts AP; Enne VI J Antimicrob Chemother; 2017 Aug; 72(8):2213-2218. PubMed ID: 28535195 [TBL] [Abstract][Full Text] [Related]
18. Impact of Different Target Sequences on Type III CRISPR-Cas Immunity. Maniv I; Jiang W; Bikard D; Marraffini LA J Bacteriol; 2016 Jan; 198(6):941-50. PubMed ID: 26755632 [TBL] [Abstract][Full Text] [Related]
19. Regulation of the CRISPR-Associated Genes by Rv2837c (CnpB) via an Orn-Like Activity in Tuberculosis Complex Mycobacteria. Zhang Y; Yang J; Bai G J Bacteriol; 2018 Apr; 200(8):. PubMed ID: 29378893 [TBL] [Abstract][Full Text] [Related]
20. Foreign DNA acquisition by the I-F CRISPR-Cas system requires all components of the interference machinery. Vorontsova D; Datsenko KA; Medvedeva S; Bondy-Denomy J; Savitskaya EE; Pougach K; Logacheva M; Wiedenheft B; Davidson AR; Severinov K; Semenova E Nucleic Acids Res; 2015 Dec; 43(22):10848-60. PubMed ID: 26586803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]