BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26330516)

  • 1. Membrane Stored Curvature Elastic Stress Modulates Recruitment of Maintenance Proteins PspA and Vipp1.
    McDonald C; Jovanovic G; Ces O; Buck M
    mBio; 2015 Sep; 6(5):e01188-15. PubMed ID: 26330516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and function of PspA and Vipp1 N-terminal peptides: Insights into the membrane stress sensing and mitigation.
    McDonald C; Jovanovic G; Wallace BA; Ces O; Buck M
    Biochim Biophys Acta Biomembr; 2017 Jan; 1859(1):28-39. PubMed ID: 27806910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The first α-helical domain of the vesicle-inducing protein in plastids 1 promotes oligomerization and lipid binding.
    Otters S; Braun P; Hubner J; Wanner G; Vothknecht UC; Chigri F
    Planta; 2013 Feb; 237(2):529-40. PubMed ID: 23053543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The N-terminal amphipathic helices determine regulatory and effector functions of phage shock protein A (PspA) in Escherichia coli.
    Jovanovic G; Mehta P; McDonald C; Davidson AC; Uzdavinys P; Ying L; Buck M
    J Mol Biol; 2014 Apr; 426(7):1498-511. PubMed ID: 24361331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible function of VIPP1 in maintaining chloroplast membranes.
    Zhang L; Sakamoto W
    Biochim Biophys Acta; 2015 Sep; 1847(9):831-7. PubMed ID: 25725437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vipp1: a very important protein in plastids?!
    Vothknecht UC; Otters S; Hennig R; Schneider D
    J Exp Bot; 2012 Feb; 63(4):1699-712. PubMed ID: 22131161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anionic lipids and the cytoskeletal proteins MreB and RodZ define the spatio-temporal distribution and function of membrane stress controller PspA in Escherichia coli.
    Jovanovic G; Mehta P; Ying L; Buck M
    Microbiology (Reading); 2014 Nov; 160(Pt 11):2374-2386. PubMed ID: 25118250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VIPP1 Involved in Chloroplast Membrane Integrity Has GTPase Activity in Vitro.
    Ohnishi N; Zhang L; Sakamoto W
    Plant Physiol; 2018 May; 177(1):328-338. PubMed ID: 29622686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex formation of Vipp1 depends on its alpha-helical PspA-like domain.
    Aseeva E; Ossenbühl F; Eichacker LA; Wanner G; Soll J; Vothknecht UC
    J Biol Chem; 2004 Aug; 279(34):35535-41. PubMed ID: 15210715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Essential role of VIPP1 in chloroplast envelope maintenance in Arabidopsis.
    Zhang L; Kato Y; Otters S; Vothknecht UC; Sakamoto W
    Plant Cell; 2012 Sep; 24(9):3695-707. PubMed ID: 23001039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of action of the Escherichia coli phage shock protein PspA in repression of the AAA family transcription factor PspF.
    Elderkin S; Jones S; Schumacher J; Studholme D; Buck M
    J Mol Biol; 2002 Jun; 320(1):23-37. PubMed ID: 12079332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VIPP1 Has a Disordered C-Terminal Tail Necessary for Protecting Photosynthetic Membranes against Stress.
    Zhang L; Kondo H; Kamikubo H; Kataoka M; Sakamoto W
    Plant Physiol; 2016 Jul; 171(3):1983-95. PubMed ID: 27208228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vipp1 deletion mutant of Synechocystis: a connection between bacterial phage shock and thylakoid biogenesis?
    Westphal S; Heins L; Soll J; Vothknecht UC
    Proc Natl Acad Sci U S A; 2001 Mar; 98(7):4243-8. PubMed ID: 11274448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The chloroplast HSP70B-CDJ2-CGE1 chaperones catalyse assembly and disassembly of VIPP1 oligomers in Chlamydomonas.
    Liu C; Willmund F; Golecki JR; Cacace S; Hess B; Markert C; Schroda M
    Plant J; 2007 Apr; 50(2):265-77. PubMed ID: 17355436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The IM30/Vipp1 C-terminus associates with the lipid bilayer and modulates membrane fusion.
    Hennig R; West A; Debus M; Saur M; Markl J; Sachs JN; Schneider D
    Biochim Biophys Acta Bioenerg; 2017 Feb; 1858(2):126-136. PubMed ID: 27836697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of stress protein PspA (phage shock protein A) of Escherichia coli in maintenance of the protonmotive force under stress conditions.
    Kleerebezem M; Crielaard W; Tommassen J
    EMBO J; 1996 Jan; 15(1):162-71. PubMed ID: 8598199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A lower-order oligomer form of phage shock protein A (PspA) stably associates with the hexameric AAA(+) transcription activator protein PspF for negative regulation.
    Joly N; Burrows PC; Engl C; Jovanovic G; Buck M
    J Mol Biol; 2009 Dec; 394(4):764-75. PubMed ID: 19804784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vipp1 and PspA: Related but not twins.
    Bultema JB; Fuhrmann E; Boekema EJ; Schneider D
    Commun Integr Biol; 2010 Mar; 3(2):162-5. PubMed ID: 20585511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli phage-shock protein A (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes.
    Kobayashi R; Suzuki T; Yoshida M
    Mol Microbiol; 2007 Oct; 66(1):100-9. PubMed ID: 17725563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a second regulatory binding site on PspF that is occupied by the C-terminal domain of PspA.
    Heidrich ES; Brüser T
    PLoS One; 2018; 13(6):e0198564. PubMed ID: 29906279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.