BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 26331256)

  • 21. Targeting the Intrinsically Disordered Proteome Using Small-Molecule Ligands.
    Wójcik S; Birol M; Rhoades E; Miranker AD; Levine ZA
    Methods Enzymol; 2018; 611():703-734. PubMed ID: 30471705
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Backbone dynamics of apocytochrome b5 in its native, partially folded state.
    Bhattacharya S; Falzone CJ; Lecomte JT
    Biochemistry; 1999 Feb; 38(8):2577-89. PubMed ID: 10029553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rotational Dynamics of Proteins from Spin Relaxation Times and Molecular Dynamics Simulations.
    Ollila OHS; Heikkinen HA; Iwaï H
    J Phys Chem B; 2018 Jun; 122(25):6559-6569. PubMed ID: 29812937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unraveling the complexity of protein backbone dynamics with combined (13)C and (15)N solid-state NMR relaxation measurements.
    Lamley JM; Lougher MJ; Sass HJ; Rogowski M; Grzesiek S; Lewandowski JR
    Phys Chem Chem Phys; 2015 Sep; 17(34):21997-2008. PubMed ID: 26234369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A six-dimensional alpha proton detection-based APSY experiment for backbone assignment of intrinsically disordered proteins.
    Yao X; Becker S; Zweckstetter M
    J Biomol NMR; 2014 Dec; 60(4):231-40. PubMed ID: 25367087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Similarities and Differences among Protein Dynamics Studied by Variable Temperature Nuclear Magnetic Resonance Relaxation.
    Busi B; Yarava JR; Bertarello A; Freymond F; Adamski W; Maurin D; Hiller M; Oschkinat H; Blackledge M; Emsley L
    J Phys Chem B; 2021 Mar; 125(9):2212-2221. PubMed ID: 33635078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards Decoding the Sequence-Based Grammar Governing the Functions of Intrinsically Disordered Protein Regions.
    Chong S; Mir M
    J Mol Biol; 2021 Jun; 433(12):166724. PubMed ID: 33248138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP.
    Rozentur-Shkop E; Goobes G; Chill JH
    J Biomol NMR; 2016 Dec; 66(4):243-257. PubMed ID: 27844185
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescence Depolarization Kinetics to Study the Conformational Preference, Structural Plasticity, Binding, and Assembly of Intrinsically Disordered Proteins.
    Majumdar A; Mukhopadhyay S
    Methods Enzymol; 2018; 611():347-381. PubMed ID: 30471693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of nano-second internal motion and determination of overall tumbling times independent of the time scale of internal motion in proteins from NMR relaxation data.
    Larsson G; Martinez G; Schleucher J; Wijmenga SS
    J Biomol NMR; 2003 Dec; 27(4):291-312. PubMed ID: 14512728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Backbone dynamics of barstar: a (15)N NMR relaxation study.
    Sahu SC; Bhuyan AK; Majumdar A; Udgaonkar JB
    Proteins; 2000 Dec; 41(4):460-74. PubMed ID: 11056034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Triple resonance ¹⁵Ν NMR relaxation experiments for studies of intrinsically disordered proteins.
    Srb P; Nováček J; Kadeřávek P; Rabatinová A; Krásný L; Žídková J; Bobálová J; Sklenář V; Žídek L
    J Biomol NMR; 2017 Nov; 69(3):133-146. PubMed ID: 29071460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein kinases phosphorylate long disordered regions in intrinsically disordered proteins.
    Koike R; Amano M; Kaibuchi K; Ota M
    Protein Sci; 2020 Feb; 29(2):564-571. PubMed ID: 31724233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NMR Characterization of Long-Range Contacts in Intrinsically Disordered Proteins from Paramagnetic Relaxation Enhancement in
    Mateos B; Konrat R; Pierattelli R; Felli IC
    Chembiochem; 2019 Feb; 20(3):335-339. PubMed ID: 30407719
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct detection of carbon and nitrogen nuclei for high-resolution analysis of intrinsically disordered proteins using NMR spectroscopy.
    Gibbs EB; Kriwacki RW
    Methods; 2018 Apr; 138-139():39-46. PubMed ID: 29341926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interpretation of biomolecular NMR spin relaxation parameters.
    Reddy T; Rainey JK
    Biochem Cell Biol; 2010 Apr; 88(2):131-42. PubMed ID: 20453916
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of (13)C(alpha)H and (15)NH backbone dynamics in protein GB1.
    Idiyatullin D; Nesmelova I; Daragan VA; Mayo KH
    Protein Sci; 2003 May; 12(5):914-22. PubMed ID: 12717014
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intermolecular Paramagnetic Relaxation Enhancement (PRE) Studies of Transient Complexes in Intrinsically Disordered Proteins.
    Janowska MK; Baum J
    Methods Mol Biol; 2016; 1345():45-53. PubMed ID: 26453204
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    Dubey A; Viennet T; Chhabra S; Takeuchi K; Seo HC; Bermel W; Frueh DP; Arthanari H
    Chem Commun (Camb); 2022 Aug; 58(68):9512-9515. PubMed ID: 35920752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Longitudinal Spin Order Labeling on Multiple Quantum Coherences Enables NMR Analysis of Intrinsically Disordered Proteins at Ultrahigh Resolution.
    Im J; Lee K; Jung S; Kim E; Lee JH
    J Phys Chem Lett; 2021 Sep; 12(38):9315-9320. PubMed ID: 34543573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.