BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 26331532)

  • 1. Decoding bipedal locomotion from the rat sensorimotor cortex.
    Rigosa J; Panarese A; Dominici N; Friedli L; van den Brand R; Carpaneto J; DiGiovanna J; Courtine G; Micera S
    J Neural Eng; 2015 Oct; 12(5):056014. PubMed ID: 26331532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.
    DiGiovanna J; Dominici N; Friedli L; Rigosa J; Duis S; Kreider J; Beauparlant J; van den Brand R; Schieppati M; Micera S; Courtine G
    J Neurosci; 2016 Oct; 36(40):10440-10455. PubMed ID: 27707977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding neural activity to predict rat locomotion using intracortical and epidural arrays.
    Barroso FO; Yoder B; Tentler D; Wallner JJ; Kinkhabwala AA; Jantz MK; Flint RD; Tostado PM; Pei E; Satish ADR; Brodnick SK; Suminski AJ; Williams JC; Miller LE; Tresch MC
    J Neural Eng; 2019 Jun; 16(3):036005. PubMed ID: 30754031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple types of movement-related information encoded in hindlimb/trunk cortex in rats and potentially available for brain-machine interface controls.
    Song W; Ramakrishnan A; Udoekwere UI; Giszter SF
    IEEE Trans Biomed Eng; 2009 Nov; 56(11 Pt 2):2712-6. PubMed ID: 19605313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotor kinematics and EMG activity during quadrupedal versus bipedal gait in the Japanese macaque.
    Higurashi Y; Maier MA; Nakajima K; Morita K; Fujiki S; Aoi S; Mori F; Murata A; Inase M
    J Neurophysiol; 2019 Jul; 122(1):398-412. PubMed ID: 31116630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison analysis of hindlimb kinematics during overground and treadmill locomotion in rats.
    Pereira JE; Cabrita AM; Filipe VM; Bulas-Cruz J; Couto PA; Melo-Pinto P; Costa LM; Geuna S; Maurício AC; Varejão AS
    Behav Brain Res; 2006 Sep; 172(2):212-8. PubMed ID: 16777243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A brain-machine-muscle interface for restoring hindlimb locomotion after complete spinal transection in rats.
    Alam M; Chen X; Zhang Z; Li Y; He J
    PLoS One; 2014; 9(8):e103764. PubMed ID: 25084446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On variability and use of rat primary motor cortex responses in behavioral task discrimination.
    Jensen W; Rousche PJ
    J Neural Eng; 2006 Mar; 3(1):L7-13. PubMed ID: 16510934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of locomotion speed and directions changes to control a vehicle using neural signals from the motor cortex of rat.
    Fukayama O; Taniguchi N; Suzuki T; Mabuchi K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1138-41. PubMed ID: 17946876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding hindlimb movement for a brain machine interface after a complete spinal transection.
    Manohar A; Flint RD; Knudsen E; Moxon KA
    PLoS One; 2012; 7(12):e52173. PubMed ID: 23300606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebellar compartments for the processing of kinematic and kinetic information related to hindlimb stepping.
    Valle MS; Bosco G; Poppele RE
    Exp Brain Res; 2017 Nov; 235(11):3437-3448. PubMed ID: 28835990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation and characterization of rat bipedal walking models established by a training program.
    Wada N; Toba Y; Iwamoto W; Goto M; Miyata H; Mori F; Morita F
    Brain Res; 2008 Dec; 1243():70-7. PubMed ID: 18835381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representation of continuous hand and arm movements in macaque areas M1, F5, and AIP: a comparative decoding study.
    Menz VK; Schaffelhofer S; Scherberger H
    J Neural Eng; 2015 Oct; 12(5):056016. PubMed ID: 26355718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 3D analysis of hindlimb motion during treadmill locomotion in rats after a 14-day episode of simulated microgravity.
    Canu MH; Garnier C; Lepoutre FX; Falempin M
    Behav Brain Res; 2005 Feb; 157(2):309-21. PubMed ID: 15639182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limb kinematics during locomotion in the two-toed sloth (Choloepus didactylus, Xenarthra) and its implications for the evolution of the sloth locomotor apparatus.
    Nyakatura JA; Petrovitch A; Fischer MS
    Zoology (Jena); 2010 Aug; 113(4):221-34. PubMed ID: 20637572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals.
    Kim JH; Bießmann F; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):867-76. PubMed ID: 25474811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotic gait analysis of bipedal treadmill stepping by spinal contused rats: characterization of intrinsic recovery and comparison with BBB.
    Nessler JA; De Leon RD; Sharp K; Kwak E; Minakata K; Reinkensmeyer DJ
    J Neurotrauma; 2006 Jun; 23(6):882-96. PubMed ID: 16774473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A region in the dorsolateral striatum of the rat exhibiting single-unit correlations with specific locomotor limb movements.
    West MO; Carelli RM; Pomerantz M; Cohen SM; Gardner JP; Chapin JK; Woodward DJ
    J Neurophysiol; 1990 Oct; 64(4):1233-46. PubMed ID: 2258744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of the motor cortex to the structure and the timing of hindlimb locomotion in the cat: a microstimulation study.
    Bretzner F; Drew T
    J Neurophysiol; 2005 Jul; 94(1):657-72. PubMed ID: 15788518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of timing electrical stimulation to robotic-assisted stepping on neuromuscular activity and associated kinematics.
    Askari S; Chao T; de Leon RD; Won DS
    J Rehabil Res Dev; 2013; 50(6):875-92. PubMed ID: 24203547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.