BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

652 related articles for article (PubMed ID: 26331536)

  • 1. Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth.
    Zhu J; Sammons MA; Donahue G; Dou Z; Vedadi M; Getlik M; Barsyte-Lovejoy D; Al-awar R; Katona BW; Shilatifard A; Huang J; Hua X; Arrowsmith CH; Berger SL
    Nature; 2015 Sep; 525(7568):206-11. PubMed ID: 26331536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of garcinol and curcumin on histone and p53 modifications in tumour cells.
    Collins HM; Abdelghany MK; Messmer M; Yue B; Deeves SE; Kindle KB; Mantelingu K; Aslam A; Winkler GS; Kundu TK; Heery DM
    BMC Cancer; 2013 Jan; 13():37. PubMed ID: 23356739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic and Epigenomic Features of Primary and Recurrent Hepatocellular Carcinomas.
    Ding X; He M; Chan AWH; Song QX; Sze SC; Chen H; Man MKH; Man K; Chan SL; Lai PBS; Wang X; Wong N
    Gastroenterology; 2019 Dec; 157(6):1630-1645.e6. PubMed ID: 31560893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. p53 mutants induce transcription of NF-κB2 in H1299 cells through CBP and STAT binding on the NF-κB2 promoter and gain of function activity.
    Vaughan CA; Singh S; Windle B; Sankala HM; Graves PR; Andrew Yeudall W; Deb SP; Deb S
    Arch Biochem Biophys; 2012 Feb; 518(1):79-88. PubMed ID: 22198284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting codon 158 p53-mutant cancers via the induction of p53 acetylation.
    Kong LR; Ong RW; Tan TZ; Mohamed Salleh NAB; Thangavelu M; Chan JV; Koh LYJ; Periyasamy G; Lau JA; Le TBU; Wang L; Lee M; Kannan S; Verma CS; Lim CM; Chng WJ; Lane DP; Venkitaraman A; Hung HT; Cheok CF; Goh BC
    Nat Commun; 2020 Apr; 11(1):2086. PubMed ID: 32350249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein kinase Msk1 physically and functionally interacts with the KMT2A/MLL1 methyltransferase complex and contributes to the regulation of multiple target genes.
    Wiersma M; Bussiere M; Halsall JA; Turan N; Slany R; Turner BM; Nightingale KP
    Epigenetics Chromatin; 2016; 9():52. PubMed ID: 27895715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutant p53 regulates enhancer-associated H3K4 monomethylation through interactions with the methyltransferase MLL4.
    Rahnamoun H; Hong J; Sun Z; Lee J; Lu H; Lauberth SM
    J Biol Chem; 2018 Aug; 293(34):13234-13246. PubMed ID: 29954944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acquisition of aneuploidy drives mutant p53-associated gain-of-function phenotypes.
    Redman-Rivera LN; Shaver TM; Jin H; Marshall CB; Schafer JM; Sheng Q; Hongo RA; Beckermann KE; Wheeler FC; Lehmann BD; Pietenpol JA
    Nat Commun; 2021 Aug; 12(1):5184. PubMed ID: 34465782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone acetylation and methylation: combinatorial players for transcriptional regulation.
    An W
    Subcell Biochem; 2007; 41():351-69. PubMed ID: 17484136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gain-of-function p53 activates multiple signaling pathways to induce oncogenicity in lung cancer cells.
    Vaughan CA; Singh S; Grossman SR; Windle B; Deb SP; Deb S
    Mol Oncol; 2017 Jun; 11(6):696-711. PubMed ID: 28423230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gain-of-function mutant p53 upregulates CXC chemokines and enhances cell migration.
    Yeudall WA; Vaughan CA; Miyazaki H; Ramamoorthy M; Choi MY; Chapman CG; Wang H; Black E; Bulysheva AA; Deb SP; Windle B; Deb S
    Carcinogenesis; 2012 Feb; 33(2):442-51. PubMed ID: 22114072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miR-193a targets MLL1 mRNA and drastically decreases MLL1 protein production: Ectopic expression of the miRNA aberrantly lowers H3K4me3 content of the chromatin and hampers cell proliferation and viability.
    Sengupta D; Deb M; Kar S; Parbin S; Pradhan N; Patra SK
    Gene; 2019 Jul; 705():22-35. PubMed ID: 31005612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases.
    Barlev NA; Liu L; Chehab NH; Mansfield K; Harris KG; Halazonetis TD; Berger SL
    Mol Cell; 2001 Dec; 8(6):1243-54. PubMed ID: 11779500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone methyltransferase MLL1 regulates MDR1 transcription and chemoresistance.
    Huo H; Magro PG; Pietsch EC; Patel BB; Scotto KW
    Cancer Res; 2010 Nov; 70(21):8726-35. PubMed ID: 20861184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Crusade against Mutant p53: Does the COMPASS Point to the Holy Grail?
    Abraham CG; Espinosa JM
    Cancer Cell; 2015 Oct; 28(4):407-408. PubMed ID: 26461087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysine methylation represses p53 activity in teratocarcinoma cancer cells.
    Zhu J; Dou Z; Sammons MA; Levine AJ; Berger SL
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9822-7. PubMed ID: 27535933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional profiling reveals a subset of human breast tumors that retain wt TP53 but display mutant p53-associated features.
    Benor G; Fuks G; Chin SF; Rueda OM; Mukherjee S; Arandkar S; Aylon Y; Caldas C; Domany E; Oren M
    Mol Oncol; 2020 Aug; 14(8):1640-1652. PubMed ID: 32484602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The histone acetyltransferase KAT6A is recruited to unmethylated CpG islands via a DNA binding winged helix domain.
    Weber LM; Jia Y; Stielow B; Gisselbrecht SS; Cao Y; Ren Y; Rohner I; King J; Rothman E; Fischer S; Simon C; Forné I; Nist A; Stiewe T; Bulyk ML; Wang Z; Liefke R
    Nucleic Acids Res; 2023 Jan; 51(2):574-594. PubMed ID: 36537216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. COMPASS Ascending: Emerging clues regarding the roles of MLL3/KMT2C and MLL2/KMT2D proteins in cancer.
    Fagan RJ; Dingwall AK
    Cancer Lett; 2019 Aug; 458():56-65. PubMed ID: 31128216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression.
    Katada S; Sassone-Corsi P
    Nat Struct Mol Biol; 2010 Dec; 17(12):1414-21. PubMed ID: 21113167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.