BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26331603)

  • 1. Redox Modulation by Reversal of the Mitochondrial Nicotinamide Nucleotide Transhydrogenase.
    Murphy MP
    Cell Metab; 2015 Sep; 22(3):363-5. PubMed ID: 26331603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversal of Mitochondrial Transhydrogenase Causes Oxidative Stress in Heart Failure.
    Nickel AG; von Hardenberg A; Hohl M; Löffler JR; Kohlhaas M; Becker J; Reil JC; Kazakov A; Bonnekoh J; Stadelmaier M; Puhl SL; Wagner M; Bogeski I; Cortassa S; Kappl R; Pasieka B; Lafontaine M; Lancaster CR; Blacker TS; Hall AR; Duchen MR; Kästner L; Lipp P; Zeller T; Müller C; Knopp A; Laufs U; Böhm M; Hoth M; Maack C
    Cell Metab; 2015 Sep; 22(3):472-84. PubMed ID: 26256392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities.
    Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF
    Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective NADH communication from α-ketoglutarate dehydrogenase to mitochondrial transhydrogenase prevents reactive oxygen species formation under reducing conditions in the heart.
    Wagner M; Bertero E; Nickel A; Kohlhaas M; Gibson GE; Heggermont W; Heymans S; Maack C
    Basic Res Cardiol; 2020 Aug; 115(5):53. PubMed ID: 32748289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diminished NADPH transhydrogenase activity and mitochondrial redox regulation in human failing myocardium.
    Sheeran FL; Rydström J; Shakhparonov MI; Pestov NB; Pepe S
    Biochim Biophys Acta; 2010; 1797(6-7):1138-48. PubMed ID: 20388492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial NAD(P)
    Francisco A; Figueira TR; Castilho RF
    Antioxid Redox Signal; 2022 May; 36(13-15):864-884. PubMed ID: 34155914
    [No Abstract]   [Full Text] [Related]  

  • 7. Mitochondrial energy-linked nicotinamide nucleotide transhydrogenase: effect of substrates on the sensitivity of the enzyme to trypsin and identification of tryptic cleavage sites.
    Yamaguchi M; Wakabayashi S; Hatefi Y
    Biochemistry; 1990 May; 29(17):4136-43. PubMed ID: 2361137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Combination of Niacinamide, Vitamin C, and PDRN Mitigates Melanogenesis by Modulating Nicotinamide Nucleotide Transhydrogenase.
    Park HJ; Byun KA; Oh S; Kim HM; Chung MS; Son KH; Byun K
    Molecules; 2022 Aug; 27(15):. PubMed ID: 35956878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH-to-NADH conversion by mitochondrial transhydrogenase is indispensable for sustaining anaerobic metabolism in Euglena gracilis.
    Nakazawa M; Takahashi M; Hayashi R; Matsubara Y; Kashiyama Y; Ueda M; Inui H; Sakamoto T
    FEBS Lett; 2021 Dec; 595(23):2922-2930. PubMed ID: 34738635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-linked nicotinamide-nucleotide transhydrogenase. Light-driven transhydrogenase catalyzed by transhydrogenase from beef heart mitochondria reconstituted with bacteriorhodopsin.
    Eytan GD; Eytan E; Rydström J
    J Biol Chem; 1987 Apr; 262(11):5015-9. PubMed ID: 3558384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereochemistry of NADPH leads to NADP+ transhydrogenation catalyzed by bovine heart mitochondrial pyridine dinucleotide transhydrogenase.
    Wu LN; Fisher RR
    J Biol Chem; 1982 Oct; 257(19):11680-3. PubMed ID: 7118903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular Redox State Acts as Switch to Determine the Direction of NNT-Catalyzed Reaction in Cystic Fibrosis Cells.
    Favia M; Atlante A
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33478087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy-linked nicotinamide-nucleotide transhydrogenase. Characterization of reconstituted ATP-driven transhydrogenase from beef heart mitochondria.
    Eytan GD; Persson B; Ekebacke A; Rydström J
    J Biol Chem; 1987 Apr; 262(11):5008-14. PubMed ID: 3558383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reaction mechanism of the mitochondrial pyridine nucleotide transhydrogenase. A study utilizing arylazido-pyridine nucleotide analogues.
    Chen S; Guillory RJ
    J Biol Chem; 1984 May; 259(9):5945-53. PubMed ID: 6715379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADPH supply and the contribution of NAD(P)
    Figueira TR; Francisco A; Ronchi JA; Dos Santos GRRM; Santos WD; Treberg JR; Castilho RF
    Arch Biochem Biophys; 2021 Aug; 707():108934. PubMed ID: 34043997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-linked nicotinamide nucleotide transhydrogenase. Kinetics and regulation of purified and reconstituted transhydrogenase from beef heart mitochondria.
    Enander K; Rydström J
    J Biol Chem; 1982 Dec; 257(24):14760-6. PubMed ID: 7174665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nicotinamide Nucleotide Transhydrogenase as a Sensor of Mitochondrial Biology.
    Nesci S; Trombetti F; Pagliarani A
    Trends Cell Biol; 2020 Jan; 30(1):1-3. PubMed ID: 31753532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool.
    Nissen TL; Anderlund M; Nielsen J; Villadsen J; Kielland-Brandt MC
    Yeast; 2001 Jan; 18(1):19-32. PubMed ID: 11124698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nicotinamide nucleotide transhydrogenase (NNT) regulates mitochondrial ROS and endothelial dysfunction in response to angiotensin II.
    Rao KNS; Shen X; Pardue S; Krzywanski DM
    Redox Biol; 2020 Sep; 36():101650. PubMed ID: 32763515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotinamide nucleotide transhydrogenase-mediated redox homeostasis promotes tumor growth and metastasis in gastric cancer.
    Li S; Zhuang Z; Wu T; Lin JC; Liu ZX; Zhou LF; Dai T; Lu L; Ju HQ
    Redox Biol; 2018 Sep; 18():246-255. PubMed ID: 30059901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.