BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26331670)

  • 21. A class of polysulfide catholytes for lithium-sulfur batteries: energy density, cyclability, and voltage enhancement.
    Yu X; Manthiram A
    Phys Chem Chem Phys; 2015 Jan; 17(3):2127-36. PubMed ID: 25484001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A highly efficient polysulfide mediator for lithium-sulfur batteries.
    Liang X; Hart C; Pang Q; Garsuch A; Weiss T; Nazar LF
    Nat Commun; 2015 Jan; 6():5682. PubMed ID: 25562485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Revealing the Sulfur Redox Paths in a Li-S Battery by an In Situ Hyphenated Technique of Electrochemistry and Mass Spectrometry.
    Yu Z; Shao Y; Ma L; Liu C; Gu C; Liu J; He P; Li M; Nie Z; Peng Z; Shao Y
    Adv Mater; 2022 Feb; 34(7):e2106618. PubMed ID: 34862816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries.
    Wu HL; Huff LA; Gewirth AA
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1709-19. PubMed ID: 25543831
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Defect-Rich Amorphous Iron-Based Oxide/Graphene Hybrid-Modified Separator toward the Efficient Capture and Catalysis of Polysulfides.
    Zhao Y; Liu J; Zhou Y; Huang X; Liu Q; Chen F; Qin H; Lou H; Yu DYW; Hou X
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41698-41706. PubMed ID: 34449203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries.
    Yang X; Zhang L; Zhang F; Huang Y; Chen Y
    ACS Nano; 2014 May; 8(5):5208-15. PubMed ID: 24749945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetically Enhanced Electrochemical Redox of Polysulfides on Polymeric Carbon Nitrides for Improved Lithium-Sulfur Batteries.
    Liang J; Yin L; Tang X; Yang H; Yan W; Song L; Cheng HM; Li F
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25193-201. PubMed ID: 27598825
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ni
    Xu L; Li H; Zhao G; Sun Y; Wang H; Guo H
    RSC Adv; 2022 Feb; 12(11):6930-6937. PubMed ID: 35424588
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rational Design of a Ni
    Shen Z; Zhang Z; Li M; Yuan Y; Zhao Y; Zhang S; Zhong C; Zhu J; Lu J; Zhang H
    ACS Nano; 2020 Jun; 14(6):6673-6682. PubMed ID: 32463691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stepwise Electrocatalysis as a Strategy against Polysulfide Shuttling in Li-S Batteries.
    Ye H; Sun J; Zhang S; Lin H; Zhang T; Yao Q; Lee JY
    ACS Nano; 2019 Dec; 13(12):14208-14216. PubMed ID: 31790591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries.
    Huang JQ; Zhuang TZ; Zhang Q; Peng HJ; Chen CM; Wei F
    ACS Nano; 2015 Mar; 9(3):3002-11. PubMed ID: 25682962
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium-Sulfur Batteries.
    Peng HJ; Zhang G; Chen X; Zhang ZW; Xu WT; Huang JQ; Zhang Q
    Angew Chem Int Ed Engl; 2016 Oct; 55(42):12990-12995. PubMed ID: 27513988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Cyclability of Li/Polysulfide Batteries by a Polymer-Modified Carbon Paper Current Collector.
    Cui Y; Fu Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20369-76. PubMed ID: 26305234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-Life and High-Areal-Capacity Li-S Batteries Enabled by a Light-Weight Polar Host with Intrinsic Polysulfide Adsorption.
    Pang Q; Nazar LF
    ACS Nano; 2016 Apr; 10(4):4111-8. PubMed ID: 26841116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polysulfides Capture-Copper Additive for Long Cycle Life Lithium Sulfur Batteries.
    Jia L; Wu T; Lu J; Ma L; Zhu W; Qiu X
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30248-30255. PubMed ID: 27753479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wide-Temperature-Range Li-S Batteries Enabled by Thiodimolybdate [Mo
    Ma Z; Liu W; Jiang X; Liu Y; Yang G; Wu Z; Zhou Q; Chen M; Xie J; Ni L; Diao G
    ACS Nano; 2022 Sep; 16(9):14569-14581. PubMed ID: 36036999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient polysulfide trapping in lithium-sulfur batteries using ultrathin and flexible BaTiO
    Wang J; Shi Z; Luo Y; Wang D; Wu H; Li Q; Fan S; Li J; Wang J
    Nanoscale; 2021 Apr; 13(14):6863-6870. PubMed ID: 33885487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrostatic Polysulfides Confinement to Inhibit Redox Shuttle Process in the Lithium Sulfur Batteries.
    Ling M; Yan W; Kawase A; Zhao H; Fu Y; Battaglia VS; Liu G
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31741-31745. PubMed ID: 28809469
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sulfur-doped graphene derived from cycled lithium-sulfur batteries as a metal-free electrocatalyst for the oxygen reduction reaction.
    Ma Z; Dou S; Shen A; Tao L; Dai L; Wang S
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1888-92. PubMed ID: 25483872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High Entropy Sulfide Nanoparticles as Lithium Polysulfide Redox Catalysts.
    Theibault MJ; McCormick CR; Lang S; Schaak RE; Abruña HD
    ACS Nano; 2023 Sep; 17(18):18402-18410. PubMed ID: 37717254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.