BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

768 related articles for article (PubMed ID: 26332235)

  • 41. Evolving rifampicin and isoniazid mono-resistance in a high multidrug-resistant and extensively drug-resistant tuberculosis region: a retrospective data analysis.
    Mvelase NR; Balakrishna Y; Lutchminarain K; Mlisana K
    BMJ Open; 2019 Nov; 9(11):e031663. PubMed ID: 31699736
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel katG mutations causing isoniazid resistance in clinical M. tuberculosis isolates.
    Torres JN; Paul LV; Rodwell TC; Victor TC; Amallraja AM; Elghraoui A; Goodmanson AP; Ramirez-Busby SM; Chawla A; Zadorozhny V; Streicher EM; Sirgel FA; Catanzaro D; Rodrigues C; Gler MT; Crudu V; Catanzaro A; Valafar F
    Emerg Microbes Infect; 2015 Jul; 4(7):e42. PubMed ID: 26251830
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Variants of katG, inhA and nat genes are not associated with mutations in efflux pump genes (mmpL3 and mmpL7) in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis from India.
    Unissa AN; Dusthackeer VNA; Kumar MP; Nagarajan P; Sukumar S; Kumari VI; Lakshmi AR; Hanna LE
    Tuberculosis (Edinb); 2017 Dec; 107():144-148. PubMed ID: 29050763
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin.
    Pillay S; Steingart KR; Davies GR; Chaplin M; De Vos M; Schumacher SG; Warren R; Theron G
    Cochrane Database Syst Rev; 2022 May; 5(5):CD014841. PubMed ID: 35583175
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of katG, inhA, rpoB and pncA in Mycobacterium tuberculosis isolates from MDR-TB risk patients in Thailand.
    Suthum K; Samosornsuk W; Samosornsuk S
    J Infect Dev Ctries; 2020 Mar; 14(3):268-276. PubMed ID: 32235087
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Investigation of isoniazid and ethionamide cross-resistance by whole genome sequencing and association with poor treatment outcomes of multidrug-resistant tuberculosis patients in South Africa.
    Malinga L; Brand J; Jansen van Rensburg C; Cassell G; van der Walt M
    Int J Mycobacteriol; 2016 Dec; 5 Suppl 1():S36-S37. PubMed ID: 28043598
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Diagnostic performance of the GenoType MTBDRplus VER 2.0 line probe assay for the detection of isoniazid resistant Mycobacterium tuberculosis in Ethiopia.
    Moga S; Bobosha K; Fikadu D; Zerihun B; Diriba G; Amare M; Kempker RR; Blumberg HM; Abebe T
    PLoS One; 2023; 18(4):e0284737. PubMed ID: 37099514
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prevalence of mutations at codon 463 of katG gene in MDR and XDR clinical isolates of Mycobacterium tuberculosis in Belarus and application of the method in rapid diagnosis.
    Arjomandzadegan M; Owlia P; Ranjbar R; Farazi AA; Sofian M; Sadrnia M; Ghaznavi-Rad E; Surkova LK; Titov LP
    Acta Microbiol Immunol Hung; 2011 Mar; 58(1):51-63. PubMed ID: 21450555
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Whole-genome sequencing of clinical isolates from tuberculosis patients in India: real-world data indicates a high proportion of pre-XDR cases.
    Bhanushali A; Atre S; Nair P; Thandaseery GA; Shah S; Kuruwa S; Zade A; Nikam C; Gomare M; Chatterjee A
    Microbiol Spectr; 2024 May; 12(5):e0277023. PubMed ID: 38597637
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of pyrosequencing for detecting extensively drug-resistant Mycobacterium tuberculosis among clinical isolates from four high-burden countries.
    Ajbani K; Lin SY; Rodrigues C; Nguyen D; Arroyo F; Kaping J; Jackson L; Garfein RS; Catanzaro D; Eisenach K; Victor TC; Crudu V; Gler MT; Ismail N; Desmond E; Catanzaro A; Rodwell TC
    Antimicrob Agents Chemother; 2015 Jan; 59(1):414-20. PubMed ID: 25367911
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular characterization of multidrug-resistant Mycobacterium tuberculosis isolates from high prevalence tuberculosis states in Mexico.
    Juarez-Eusebio DM; Munro-Rojas D; Muñiz-Salazar R; Laniado-Laborín R; Martinez-Guarneros JA; Flores-López CA; Zenteno-Cuevas R
    Infect Genet Evol; 2017 Nov; 55():384-391. PubMed ID: 27637930
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Isoniazid and rifampicin resistance mutations and their effect on second-line anti-tuberculosis treatment.
    Abate D; Tedla Y; Meressa D; Ameni G
    Int J Tuberc Lung Dis; 2014 Aug; 18(8):946-51. PubMed ID: 25199009
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prevalence of mutations in genes associated with isoniazid resistance in Mycobacterium tuberculosis isolates from re-treated smear-positive pulmonary tuberculosis patients: A meta-analysis.
    Alagappan C; Sunil Shivekar S; Brammacharry U; Cuppusamy Kapalamurthy VR; Sakkaravarthy A; Subashkumar R; Muthaiah M
    J Glob Antimicrob Resist; 2018 Sep; 14():253-259. PubMed ID: 29604431
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prevalence and molecular characteristics of drug-resistant Mycobacterium tuberculosis in Beijing, China: 2006 versus 2012.
    Yin QQ; Jiao WW; Li QJ; Xu F; Li JQ; Sun L; Li YJ; Huang HR; Shen AD
    BMC Microbiol; 2016 May; 16():85. PubMed ID: 27176471
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genome sequencing of Mycobacterium tuberculosis clinical isolates revealed isoniazid resistance mechanisms undetected by conventional molecular methods.
    Laurent S; Zakham F; Bertelli C; Merz L; Nicod L; Mazza-Stalder J; Greub G; Jaton K; Opota O
    Int J Antimicrob Agents; 2020 Aug; 56(2):106068. PubMed ID: 32603684
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiple mutations in katG and inhA identified in Thai isoniazid-resistant Mycobacterium tuberculosis isolates.
    Khadka DK; Eampokalap B; Panitchakorn J; Ramasoota P; Khusmith S
    Southeast Asian J Trop Med Public Health; 2007 Mar; 38(2):376-82. PubMed ID: 17539290
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Epidemiology of isoniazid resistance mutations and their effect on tuberculosis treatment outcomes.
    Huyen MN; Cobelens FG; Buu TN; Lan NT; Dung NH; Kremer K; Tiemersma EW; van Soolingen D
    Antimicrob Agents Chemother; 2013 Aug; 57(8):3620-7. PubMed ID: 23689727
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetic Mutations Associated with Isoniazid Resistance in Mycobacterium tuberculosis in Mongolia.
    Narmandakh E; Tumenbayar O; Borolzoi T; Erkhembayar B; Boldoo T; Dambaa N; Burneebaatar B; Nymadawa N; Mitarai S; Jav S; Chiang CY
    Antimicrob Agents Chemother; 2020 Jun; 64(7):. PubMed ID: 32312782
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular mechanism of rifampicin and isoniazid resistance in Mycobacterium tuberculosis from Bangladesh.
    Rahim Z; Nakajima C; Raqib R; Zaman K; Endtz HP; van der Zanden AG; Suzuki Y
    Tuberculosis (Edinb); 2012 Nov; 92(6):529-34. PubMed ID: 22863574
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Significance of the coexistence of non-codon 315 katG, inhA, and oxyR-ahpC intergenic gene mutations among isoniazid-resistant and multidrug-resistant isolates of Mycobacterium tuberculosis: a report of novel mutations.
    Norouzi F; Moghim S; Farzaneh S; Fazeli H; Salehi M; Nasr Esfahani B
    Pathog Glob Health; 2022 Feb; 116(1):22-29. PubMed ID: 34086544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.