These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26332275)

  • 41. Manipulation of charge carrier flow in Bi
    Ogawa K; Sakamoto R; Zhong C; Suzuki H; Kato K; Tomita O; Nakashima K; Yamakata A; Tachikawa T; Saeki A; Kageyama H; Abe R
    Chem Sci; 2022 Mar; 13(11):3118-3128. PubMed ID: 35414879
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of Single-Atom Cocatalysts on the Activity of Faceted TiO
    Wei T; Zhu Y; Wu Y; An X; Liu LM
    Langmuir; 2019 Jan; 35(2):391-397. PubMed ID: 30580513
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced Visible-Light Photocatalytic H
    Liu B; Ning L; Zhang C; Zheng H; Liu SF; Yang H
    Inorg Chem; 2018 Jul; 57(13):8019-8027. PubMed ID: 29927594
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles.
    Xiang Q; Yu J; Jaroniec M
    J Am Chem Soc; 2012 Apr; 134(15):6575-8. PubMed ID: 22458309
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly Dispersed Ni-Pt Bimetallic Cocatalyst: The Synergetic Effect Yields Pt-Like Activity in Photocatalytic Hydrogen Evolution.
    Wang C; Dragoe D; Colbeau-Justin C; Haghi-Ashtiani P; Ghazzal MN; Remita H
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):42637-42647. PubMed ID: 37649420
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dual Cocatalysts in TiO
    Meng A; Zhang L; Cheng B; Yu J
    Adv Mater; 2019 Jul; 31(30):e1807660. PubMed ID: 31148244
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Designing p-type semiconductor-metal hybrid structures for improved photocatalysis.
    Wang L; Ge J; Wang A; Deng M; Wang X; Bai S; Li R; Jiang J; Zhang Q; Luo Y; Xiong Y
    Angew Chem Int Ed Engl; 2014 May; 53(20):5107-11. PubMed ID: 24700571
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Using Hot Electrons and Hot Holes for Simultaneous Cocatalyst Deposition on Plasmonic Nanostructures.
    Kontoleta E; Tsoukala A; Askes SHC; Zoethout E; Oksenberg E; Agrawal H; Garnett EC
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):35986-35994. PubMed ID: 32672034
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Shape-Dependent Performance of Cu/Cu
    Zheng Y; Duan Z; Liang R; Lv R; Wang C; Zhang Z; Wan S; Wang S; Xiong H; Ngaw CK; Lin J; Wang Y
    ChemSusChem; 2022 May; 15(10):e202200216. PubMed ID: 35301825
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Highly efficient BiVO
    Wang X; Liao D; Yu H; Yu J
    Dalton Trans; 2018 May; 47(18):6370-6377. PubMed ID: 29664485
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatial Separation of Photogenerated Charges on Well-Defined Bismuth Vanadate Square Nanocrystals.
    Deng Y; Zhou H; Zhao Y; Yang B; Shi M; Tao X; Yang S; Li R; Li C
    Small; 2022 Feb; 18(5):e2103245. PubMed ID: 34766433
    [TBL] [Abstract][Full Text] [Related]  

  • 52. TiO2 /Cu2 O Core/Ultrathin Shell Nanorods as Efficient and Stable Photocatalysts for Water Reduction.
    Liu Y; Zhang B; Luo L; Chen X; Wang Z; Wu E; Su D; Huang W
    Angew Chem Int Ed Engl; 2015 Dec; 54(50):15260-5. PubMed ID: 26555557
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Creation of Cu2O@TiO2 composite photocatalysts with p-n heterojunctions formed on exposed Cu2O facets, their energy band alignment study, and their enhanced photocatalytic activity under illumination with visible light.
    Liu L; Yang W; Sun W; Li Q; Shang JK
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1465-76. PubMed ID: 25546838
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Double-shelled Cu
    Huo H; Liu D; Feng H; Tian Z; Liu X; Li A
    Nanoscale; 2020 Jul; 12(26):13912-13917. PubMed ID: 32578651
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Intergrowth of Cocatalysts with Host Photocatalysts for Improved Solar-to-Hydrogen Conversion.
    Qin Z; Chen Y; Wang X; Guo X; Guo L
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1264-72. PubMed ID: 26711355
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rh/Cr
    Liu M; Zhang G; Liang X; Pan Z; Zheng D; Wang S; Yu Z; Hou Y; Wang X
    Angew Chem Int Ed Engl; 2023 Sep; 62(37):e202304694. PubMed ID: 37162371
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synergetic Effect of Facet Junction and Specific Facet Activation of ZnFe
    Li J; Li X; Yin Z; Wang X; Ma H; Wang L
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29004-29013. PubMed ID: 31314495
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Self-template synthesis of double-layered porous nanotubes with spatially separated photoredox surfaces for efficient photocatalytic hydrogen production.
    Xin Y; Huang Y; Lin K; Yu Y; Zhang B
    Sci Bull (Beijing); 2018 May; 63(10):601-608. PubMed ID: 36658880
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spatially Separating Redox Centers and Photothermal Effect Synergistically Boosting the Photocatalytic Hydrogen Evolution of ZnIn
    Wang M; Zhang G; Guan Z; Yang J; Li Q
    Small; 2021 Apr; 17(17):e2006952. PubMed ID: 33705594
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metal-Organic-Framework-Based Photocatalysts Optimized by Spatially Separated Cocatalysts for Overall Water Splitting.
    Zhang J; Bai T; Huang H; Yu MH; Fan X; Chang Z; Bu XH
    Adv Mater; 2020 Dec; 32(49):e2004747. PubMed ID: 33150624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.