These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 26332284)

  • 41. A microfluidic positioning chamber for long-term live-cell imaging.
    Hanson L; Cui L; Xie C; Cui B
    Microsc Res Tech; 2011 Jun; 74(6):496-501. PubMed ID: 20936672
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An automated microfluidic system for efficient capture of rare cells and rapid flow-free stimulation.
    Dettinger P; Wang W; Ahmed N; Zhang Y; Loeffler D; Kull T; Etzrodt M; Lengerke C; Schroeder T
    Lab Chip; 2020 Nov; 20(22):4246-4254. PubMed ID: 33063816
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pressure-driven microfluidic perfusion culture device for integrated dose-response assays.
    Hattori K; Sugiura S; Kanamori T
    J Lab Autom; 2013 Dec; 18(6):437-45. PubMed ID: 24014544
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
    Knowlton S; Yu CH; Ersoy F; Emadi S; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):025019. PubMed ID: 27321481
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development and characterization of a microfluidic model of the tumour microenvironment.
    Ayuso JM; Virumbrales-Muñoz M; Lacueva A; Lanuza PM; Checa-Chavarria E; Botella P; Fernández E; Doblare M; Allison SJ; Phillips RM; Pardo J; Fernandez LJ; Ochoa I
    Sci Rep; 2016 Oct; 6():36086. PubMed ID: 27796335
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Applications of microfluidics in microalgae biotechnology: A review.
    Juang YJ; Chang JS
    Biotechnol J; 2016 Mar; 11(3):327-35. PubMed ID: 26807667
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High throughput cell cycle analysis using microfluidic image cytometry (μFIC).
    Yoo HJ; Park J; Yoon TH
    Cytometry A; 2013 Apr; 83(4):356-62. PubMed ID: 23418122
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Applying Microfluidic Systems to Study Effects of Glucose at Single-Cell Level.
    Welkenhuysen N; Adiels CB; Goksör M; Hohmann S
    Methods Mol Biol; 2018; 1713():109-121. PubMed ID: 29218521
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A polyp-on-chip for coral long-term culture.
    Pang AP; Luo Y; He C; Lu Z; Lu X
    Sci Rep; 2020 Apr; 10(1):6964. PubMed ID: 32332805
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 96-well format-based microfluidic platform for parallel interconnection of multiple multicellular spheroids.
    Kim JY; Fluri DA; Kelm JM; Hierlemann A; Frey O
    J Lab Autom; 2015 Jun; 20(3):274-82. PubMed ID: 25524491
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A microfluidic cell-trapping device for single-cell tracking of host-microbe interactions.
    Delincé MJ; Bureau JB; López-Jiménez AT; Cosson P; Soldati T; McKinney JD
    Lab Chip; 2016 Aug; 16(17):3276-85. PubMed ID: 27425421
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Measuring In Vivo Protein Dynamics Throughout the Cell Cycle Using Microfluidics.
    de Leeuw R; Brazda P; Charl Moolman M; Kerssemakers JWJ; Solano B; Dekker NH
    Methods Mol Biol; 2017; 1624():237-252. PubMed ID: 28842888
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Integrated multifunctional microfluidics for automated proteome analyses.
    Osiri JK; Shadpour H; Witek MA; Soper SA
    Top Curr Chem; 2011; 304():261-94. PubMed ID: 21678138
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microfluidics as a new tool in radiation biology.
    Lacombe J; Phillips SL; Zenhausern F
    Cancer Lett; 2016 Feb; 371(2):292-300. PubMed ID: 26704304
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automated long-term monitoring of parallel microfluidic operations applying a machine vision-assisted positioning method.
    Yip HM; Li JC; Xie K; Cui X; Prasad A; Gao Q; Leung CC; Lam RH
    ScientificWorldJournal; 2014; 2014():608184. PubMed ID: 25133248
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfluidics for synthetic biology: from design to execution.
    Ferry MS; Razinkov IA; Hasty J
    Methods Enzymol; 2011; 497():295-372. PubMed ID: 21601093
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Using bioinspired thermally triggered liposomes for high-efficiency mixing and reagent delivery in microfluidic devices.
    Vreeland WN; Locascio LE
    Anal Chem; 2003 Dec; 75(24):6906-11. PubMed ID: 14670052
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microfluidic platforms for generating dynamic environmental perturbations to study the responses of single yeast cells.
    Bisaria A; Hersen P; McClean MN
    Methods Mol Biol; 2014; 1205():111-29. PubMed ID: 25213242
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single-Cell Analysis of Mycobacteria Using Microfluidics and Time-Lapse Microscopy.
    Manina G; Dhar N
    Methods Mol Biol; 2021; 2314():205-229. PubMed ID: 34235654
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microfluidic sonicator for real-time disruption of eukaryotic cells and bacterial spores for DNA analysis.
    Marentis TC; Kusler B; Yaralioglu GG; Liu S; Haeggström EO; Khuri-Yakub BT
    Ultrasound Med Biol; 2005 Sep; 31(9):1265-77. PubMed ID: 16176793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.