These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26332284)

  • 61. Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: Nutrients removal, biomass and lipid production.
    Gonçalves AL; Pires JC; Simões M
    Bioresour Technol; 2016 Jan; 200():279-86. PubMed ID: 26496217
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Continuous harvesting of microalgae by new microfluidic technology for particle separation.
    Hønsvall BK; Altin D; Robertson LJ
    Bioresour Technol; 2016 Jan; 200():360-5. PubMed ID: 26512859
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Microfluidic cell culture array chip for drug screening assays].
    Zheng Y; Wu J; Shao J; Jin Q; Zhao J
    Sheng Wu Gong Cheng Xue Bao; 2009 May; 25(5):779-85. PubMed ID: 19670650
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis.
    Kim JY; Kwak HS; Sung YJ; Choi HI; Hong ME; Lim HS; Lee JH; Lee SY; Sim SJ
    Sci Rep; 2016 Feb; 6():21155. PubMed ID: 26852806
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Real-time monitoring of cell migration, phagocytosis and cell surface receptor dynamics using a novel, live-cell opto-microfluidic technique.
    Kijanka GS; Dimov IK; Burger R; Ducrée J
    Anal Chim Acta; 2015 May; 872():95-9. PubMed ID: 25892074
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pump-free multi-well-based microfluidic system for high-throughput analysis of size-control relative genes in budding yeast.
    Kang X; Jiang L; Chen X; Yuan H; Luo C; Ouyang Q
    Integr Biol (Camb); 2014 Jul; 6(7):685-93. PubMed ID: 24872017
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The global explosion of eukaryotic algae: The potential role of phosphorus?
    Eckford-Soper LK; Canfield DE
    PLoS One; 2020; 15(10):e0234372. PubMed ID: 33091058
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Identification of the proteomic changes in Synechocystis sp. PCC 6803 following prolonged UV-B irradiation.
    Gao Y; Xiong W; Li XB; Gao CF; Zhang YL; Li H; Wu QY
    J Exp Bot; 2009; 60(4):1141-54. PubMed ID: 19261921
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Detection of outer membrane vesicles in Synechocystis PCC 6803.
    Pardo YA; Florez C; Baker KM; Schertzer JW; Mahler GJ
    FEMS Microbiol Lett; 2015 Oct; 362(20):. PubMed ID: 26363014
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Versatile, fully automated, microfluidic cell culture system.
    Gómez-Sjöberg R; Leyrat AA; Pirone DM; Chen CS; Quake SR
    Anal Chem; 2007 Nov; 79(22):8557-63. PubMed ID: 17953452
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Microfluidics for long-term single-cell time-lapse microscopy: Advances and applications.
    Allard P; Papazotos F; Potvin-Trottier L
    Front Bioeng Biotechnol; 2022; 10():968342. PubMed ID: 36312536
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fiber probe based microfluidic raman spectroscopy.
    Ashok PC; Singh GP; Tan KM; Dholakia K
    Opt Express; 2010 Apr; 18(8):7642-9. PubMed ID: 20588604
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Surface-enhanced Raman signatures of pigmentation of cyanobacteria from within geological samples in a spectroscopic-microfluidic flow cell.
    Wilson R; Monaghan P; Bowden SA; Parnell J; Cooper JM
    Anal Chem; 2007 Sep; 79(18):7036-41. PubMed ID: 17711297
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cell migration in confinement: a micro-channel-based assay.
    Heuzé ML; Collin O; Terriac E; Lennon-Duménil AM; Piel M
    Methods Mol Biol; 2011; 769():415-34. PubMed ID: 21748692
    [TBL] [Abstract][Full Text] [Related]  

  • 76. An easy-to-build and re-usable microfluidic system for live-cell imaging.
    Babic J; Griscom L; Cramer J; Coudreuse D
    BMC Cell Biol; 2018 Jun; 19(1):8. PubMed ID: 29925307
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cells in microfluidics.
    Zhang C; van Noort D
    Top Curr Chem; 2011; 304():295-321. PubMed ID: 21598103
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biomass-to-biocrude on a chip via hydrothermal liquefaction of algae.
    Cheng X; Ooms MD; Sinton D
    Lab Chip; 2016 Jan; 16(2):256-60. PubMed ID: 26667244
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biosensors in microfluidic chips.
    Noh J; Kim HC; Chung TD
    Top Curr Chem; 2011; 304():117-52. PubMed ID: 21516388
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A microfluidic platform for correlative live-cell and super-resolution microscopy.
    Tam J; Cordier GA; Bálint Š; Sandoval Álvarez Á; Borbely JS; Lakadamyali M
    PLoS One; 2014; 9(12):e115512. PubMed ID: 25545548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.