BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 26332826)

  • 41. Evaluation of Photosynthetic Behaviors by Simultaneous Measurements of Leaf Reflectance and Chlorophyll Fluorescence Analyses.
    Kohzuma K
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449250
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ferredoxin limits cyclic electron flow around PSI (CEF-PSI) in higher plants--stimulation of CEF-PSI enhances non-photochemical quenching of Chl fluorescence in transplastomic tobacco.
    Yamamoto H; Kato H; Shinzaki Y; Horiguchi S; Shikanai T; Hase T; Endo T; Nishioka M; Makino A; Tomizawa K; Miyake C
    Plant Cell Physiol; 2006 Oct; 47(10):1355-71. PubMed ID: 16956929
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On the relationship between non-photochemical quenching and photoprotection of Photosystem II.
    Lambrev PH; Miloslavina Y; Jahns P; Holzwarth AR
    Biochim Biophys Acta; 2012 May; 1817(5):760-9. PubMed ID: 22342615
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acclimation of Arabidopsis thaliana to the light environment: the role of photoreceptors.
    Walters RG; Rogers JJ; Shephard F; Horton P
    Planta; 1999 Oct; 209(4):517-27. PubMed ID: 10550634
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular basis of the functional specificities of phototropin 1 and 2.
    Aihara Y; Tabata R; Suzuki T; Shimazaki K; Nagatani A
    Plant J; 2008 Nov; 56(3):364-75. PubMed ID: 18643969
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crystallographic and functional analyses of J-domain of JAC1 essential for chloroplast photorelocation movement in Arabidopsis thaliana.
    Takano A; Suetsugu N; Wada M; Kohda D
    Plant Cell Physiol; 2010 Aug; 51(8):1372-6. PubMed ID: 20562448
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CHLOROPLAST UNUSUAL POSITIONING 1 is a plant-specific actin polymerization factor regulating chloroplast movement.
    Kong SG; Yamazaki Y; Shimada A; Kijima ST; Hirose K; Katoh K; Ahn J; Song HG; Han JW; Higa T; Takano A; Nakamura Y; Suetsugu N; Kohda D; Uyeda TQP; Wada M
    Plant Cell; 2024 Mar; 36(4):1159-1181. PubMed ID: 38134410
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana.
    Suetsugu N; Yamada N; Kagawa T; Yonekura H; Uyeda TQ; Kadota A; Wada M
    Proc Natl Acad Sci U S A; 2010 May; 107(19):8860-5. PubMed ID: 20418504
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Automatic Chloroplast Movement Analysis.
    Johansson H; Zeidler M
    Methods Mol Biol; 2016; 1398():29-35. PubMed ID: 26867613
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Arabidopsis mutants lacking DLDG1 and non-photochemical quenching-related proteins reveal the regulatory role of DLDG1 in chloroplast pH homeostasis.
    Suzuki K; Masuda S
    FEBS Lett; 2023 Jul; 597(13):1761-1769. PubMed ID: 37339934
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Toward an understanding of the mechanism of nonphotochemical quenching in green plants.
    Holt NE; Fleming GR; Niyogi KK
    Biochemistry; 2004 Jul; 43(26):8281-9. PubMed ID: 15222740
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chloroplast avoidance movement is not functional in plants grown under strong sunlight.
    Higa T; Wada M
    Plant Cell Environ; 2016 Apr; 39(4):871-82. PubMed ID: 26586173
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Blue light-induced chloroplast avoidance and phototropic responses exhibit distinct dose dependency of PHOTOTROPIN2 in Arabidopsis thaliana.
    Kimura M; Kagawa T
    Photochem Photobiol; 2009; 85(5):1260-4. PubMed ID: 19453386
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis.
    Kadota A; Yamada N; Suetsugu N; Hirose M; Saito C; Shoda K; Ichikawa S; Kagawa T; Nakano A; Wada M
    Proc Natl Acad Sci U S A; 2009 Aug; 106(31):13106-11. PubMed ID: 19620714
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineering the phototropin photocycle improves photoreceptor performance and plant biomass production.
    Hart JE; Sullivan S; Hermanowicz P; Petersen J; Diaz-Ramos LA; Hoey DJ; Łabuz J; Christie JM
    Proc Natl Acad Sci U S A; 2019 Jun; 116(25):12550-12557. PubMed ID: 31160455
    [TBL] [Abstract][Full Text] [Related]  

  • 56. FLUCTUATING-LIGHT-ACCLIMATION PROTEIN1, Conserved in Oxygenic Phototrophs, Regulates H+ Homeostasis and Non-Photochemical Quenching in Chloroplasts.
    Sato R; Kono M; Harada K; Ohta H; Takaichi S; Masuda S
    Plant Cell Physiol; 2017 Oct; 58(10):1622-1630. PubMed ID: 29016945
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phototropin 1 Mediates High-Intensity Blue Light-Induced Chloroplast Accumulation Response in a Root Phototropism 2-Dependent Manner in
    Wang J; Liang YP; Zhu JD; Wang YX; Yang MY; Yan HR; Lv QY; Cheng K; Zhao X; Zhang X
    Front Plant Sci; 2021; 12():704618. PubMed ID: 34646282
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transitions of gene expression induced by short-term blue light.
    Lehmann P; Nöthen J; von Braun SS; Bohnsack MT; Mirus O; Schleiff E
    Plant Biol (Stuttg); 2011 Mar; 13(2):349-61. PubMed ID: 21309982
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis.
    Gotoh E; Suetsugu N; Higa T; Matsushita T; Tsukaya H; Wada M
    Sci Rep; 2018 Jan; 8(1):1472. PubMed ID: 29367686
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chlorophyll fluorescence in the leaves of Tradescantia species of different ecological groups: induction events at different intensities of actinic light.
    Ptushenko VV; Ptushenko EA; Samoilova OP; Tikhonov AN
    Biosystems; 2013 Nov; 114(2):85-97. PubMed ID: 23948518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.