These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26332854)

  • 21. Transcriptional control in the EcoRI-F immunity region of Bacillus subtilis phage phi 105. Identification and unusual structure of the operator.
    Van Kaer L; Van Montagu M; Dhaese P
    J Mol Biol; 1987 Sep; 197(1):55-67. PubMed ID: 3119860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single independent operator sites are involved in the genetic switch of the Lactobacillus delbrueckii bacteriophage mv4.
    Coddeville M; Auvray F; Mikkonen M; Ritzenthaler P
    Virology; 2007 Aug; 364(2):256-68. PubMed ID: 17412387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The bacteriophage 434 right operator. Roles of O(R)1, O(R)2 and O(R)3.
    Bushman FD
    J Mol Biol; 1993 Mar; 230(1):28-40. PubMed ID: 8450541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of the genetic switch and replication region of a P335-type bacteriophage with an obligate lytic lifestyle on Lactococcus lactis.
    Madsen SM; Mills D; Djordjevic G; Israelsen H; Klaenhammer TR
    Appl Environ Microbiol; 2001 Mar; 67(3):1128-39. PubMed ID: 11229902
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The dual role of Apl in prophage induction of coliphage 186.
    Reed MR; Shearwin KE; Pell LM; Egan JB
    Mol Microbiol; 1997 Feb; 23(4):669-81. PubMed ID: 9157239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional requirements for bacteriophage growth: gene essentiality and expression in mycobacteriophage Giles.
    Dedrick RM; Marinelli LJ; Newton GL; Pogliano K; Pogliano J; Hatfull GF
    Mol Microbiol; 2013 May; 88(3):577-89. PubMed ID: 23560716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In silico analysis of mycobacteriophage Che12 genome: characterization of genes required to lysogenise Mycobacterium tuberculosis.
    Gomathi NS; Sameer H; Kumar V; Balaji S; Dustackeer VN; Narayanan PR
    Comput Biol Chem; 2007 Apr; 31(2):82-91. PubMed ID: 17379577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mycobacteriophage Alexphander Gene
    Chong Qui E; Habtehyimer F; Germroth A; Grant J; Kosanovic L; Singh I; Hancock SP
    Int J Mol Sci; 2024 Jul; 25(13):. PubMed ID: 39000573
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cloning and sequencing analysis of the repressor gene of temperate mycobacteriophage L1.
    Sau S; Chattoraj P; Ganguly T; Lee CY; Mandal NC
    J Biochem Mol Biol; 2004 Mar; 37(2):254-9. PubMed ID: 15469704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control of lytic development in the Streptomyces temperate phage phi C31.
    Wilson SE; Ingham CJ; Hunter IS; Smith MC
    Mol Microbiol; 1995 Apr; 16(1):131-43. PubMed ID: 7651131
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of MOR and the CI operator sites on the genetic switch of the temperate bacteriophage TP901-1.
    Pedersen M; Hammer K
    J Mol Biol; 2008 Dec; 384(3):577-89. PubMed ID: 18930065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the lysogeny DNA module from the temperate Streptococcus thermophilus bacteriophage phi Sfi21.
    Bruttin A; Desiere F; Lucchini S; Foley S; Brüssow H
    Virology; 1997 Jun; 233(1):136-48. PubMed ID: 9201223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The transcriptional switch of bacteriophage WPhi, a P2-related but heteroimmune coliphage.
    Liu T; Haggård-Ljungquist E
    J Virol; 1999 Dec; 73(12):9816-26. PubMed ID: 10559293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Repression of transcription initiation at 434 P(R) by 434 repressor: effects on transition of a closed to an open promoter complex.
    Xu J; Koudelka GB
    J Mol Biol; 2001 Jun; 309(3):573-87. PubMed ID: 11397081
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regions and residues of an asymmetric operator DNA interacting with the monomeric repressor of temperate mycobacteriophage L1.
    Bandhu A; Ganguly T; Jana B; Mondal R; Sau S
    Biochemistry; 2010 May; 49(19):4235-43. PubMed ID: 20377203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on the gene regulation involved in the lytic-lysogenic switch in Staphylococcus aureus temperate bacteriophage Phi11.
    Das A; Mandal S; Hemmadi V; Ratre V; Biswas M
    J Biochem; 2020 Dec; 168(6):659-668. PubMed ID: 32702081
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repression of the lysogenic P
    Pedersen M; Neergaard JT; Cassias J; Rasmussen KK; Lo Leggio L; Sneppen K; Hammer K; Kilstrup M
    Sci Rep; 2020 May; 10(1):8659. PubMed ID: 32457340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The operator-early promoter regions of Shiga-toxin bearing phage H-19B.
    Shi T; Friedman DI
    Mol Microbiol; 2001 Aug; 41(3):585-99. PubMed ID: 11532127
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome organization and characterization of mycobacteriophage Bxb1.
    Mediavilla J; Jain S; Kriakov J; Ford ME; Duda RL; Jacobs WR; Hendrix RW; Hatfull GF
    Mol Microbiol; 2000 Dec; 38(5):955-70. PubMed ID: 11123671
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of quaternary structure and functional domains of the CI repressor from bacteriophage TP901-1.
    Pedersen M; Lo Leggio L; Grossmann JG; Larsen S; Hammer K
    J Mol Biol; 2008 Feb; 376(4):983-96. PubMed ID: 18191944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.