These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 26332985)

  • 1. Bioleaching of rare earth elements from monazite sand.
    Brisson VL; Zhuang WQ; Alvarez-Cohen L
    Biotechnol Bioeng; 2016 Feb; 113(2):339-48. PubMed ID: 26332985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of phosphate solubilising microorganisms with natural rare-earth phosphate minerals: a study utilizing Western Australian monazite.
    Corbett MK; Eksteen JJ; Niu XZ; Croue JP; Watkin ELJ
    Bioprocess Biosyst Eng; 2017 Jun; 40(6):929-942. PubMed ID: 28324179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolomic Analysis Reveals Contributions of Citric and Citramalic Acids to Rare Earth Bioleaching by a
    Brisson VL; Zhuang WQ; Alvarez-Cohen L
    Front Microbiol; 2019; 10():3008. PubMed ID: 31993037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Syntrophic effect of indigenous and inoculated microorganisms in the leaching of rare earth elements from Western Australian monazite.
    Corbett MK; Eksteen JJ; Niu XZ; Watkin ELJ
    Res Microbiol; 2018 Dec; 169(10):558-568. PubMed ID: 29852218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monazite transformation into Ce- and La-containing oxalates by Aspergillus niger.
    Kang X; Csetenyi L; Gadd GM
    Environ Microbiol; 2020 Apr; 22(4):1635-1648. PubMed ID: 32114711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colonization and bioweathering of monazite by Aspergillus niger: solubilization and precipitation of rare earth elements.
    Kang X; Csetenyi L; Gadd GM
    Environ Microbiol; 2021 Jul; 23(7):3970-3986. PubMed ID: 33459476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of element yield, bacterial community structure and the impact of carbon sources for bioleaching rare earth elements from high grade monazite.
    Corbett MK; Gifford A; Fimognari N; Watkin ELJ
    Res Microbiol; 2024; 175(1-2):104133. PubMed ID: 37683878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of microorganisms in bioleaching of rare earth elements from primary and secondary resources.
    Fathollahzadeh H; Eksteen JJ; Kaksonen AH; Watkin ELJ
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1043-1057. PubMed ID: 30488284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger.
    Aung KM; Ting YP
    J Biotechnol; 2005 Mar; 116(2):159-70. PubMed ID: 15664080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concomitant Leaching and Electrochemical Extraction of Rare Earth Elements from Monazite.
    Maes S; Zhuang WQ; Rabaey K; Alvarez-Cohen L; Hennebel T
    Environ Sci Technol; 2017 Feb; 51(3):1654-1661. PubMed ID: 28056169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of mineral constituents in the bioleaching of uranium from uraniferous sedimentary rock samples, Southwestern Sinai, Egypt.
    Amin MM; Elaassy IE; El-Feky MG; Sallam AS; Talaat MS; Kawady NA
    J Environ Radioact; 2014 Aug; 134():76-82. PubMed ID: 24682031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate-solubilizing potentiality of the microorganisms capable of utilizing aluminium phosphate as a sole phosphate source.
    Banik S; Dey BK
    Zentralbl Mikrobiol; 1983; 138(1):17-23. PubMed ID: 6845902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha.
    Hopfe S; Flemming K; Lehmann F; Möckel R; Kutschke S; Pollmann K
    Waste Manag; 2017 Apr; 62():211-221. PubMed ID: 28223076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10.
    Qu Y; Lian B
    Bioresour Technol; 2013 May; 136():16-23. PubMed ID: 23548400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the role of microbial metabolites in in-situ noncontact bioleaching of ion-adsorption rare earth ore.
    Zhao Y; Zhao H; Shen L; Qiu G; Wang Y
    J Environ Manage; 2024 Sep; 368():122184. PubMed ID: 39128358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel green strategy for biorecovery of valuable elements along with enrichment of rare earth elements from activated spent automotive catalysts using fungal metabolites.
    Bahaloo-Horeh N; Mousavi SM
    J Hazard Mater; 2022 May; 430():128509. PubMed ID: 35739687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of a starch utilizing, phosphate solubilizing fungus on buffered medium and its characterization.
    Ahuja A; Ghosh SB; D'Souza SF
    Bioresour Technol; 2007 Dec; 98(17):3408-11. PubMed ID: 17532627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger.
    Li Z; Bai T; Dai L; Wang F; Tao J; Meng S; Hu Y; Wang S; Hu S
    Sci Rep; 2016 Apr; 6():25313. PubMed ID: 27126606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximization of organic acids production by Aspergillus niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments.
    Rasoulnia P; Mousavi SM
    Bioresour Technol; 2016 Sep; 216():729-36. PubMed ID: 27295250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aluminium leaching from red mud by filamentous fungi.
    Urík M; Bujdoš M; Milová-Žiaková B; Mikušová P; Slovák M; Matúš P
    J Inorg Biochem; 2015 Nov; 152():154-9. PubMed ID: 26365318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.