These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26333363)

  • 1. Projected phase-change memory devices.
    Koelmans WW; Sebastian A; Jonnalagadda VP; Krebs D; Dellmann L; Eleftheriou E
    Nat Commun; 2015 Sep; 6():8181. PubMed ID: 26333363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. State dependence and temporal evolution of resistance in projected phase change memory.
    Kersting B; Ovuka V; Jonnalagadda VP; Sousa M; Bragaglia V; Sarwat SG; Le Gallo M; Salinga M; Sebastian A
    Sci Rep; 2020 May; 10(1):8248. PubMed ID: 32427898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Assessment of Interfaces in Projected Phase-Change Memory.
    Bragaglia V; Jonnalagadda VP; Sousa M; Sarwat SG; Kersting B; Sebastian A
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase-change heterostructure enables ultralow noise and drift for memory operation.
    Ding K; Wang J; Zhou Y; Tian H; Lu L; Mazzarello R; Jia C; Zhang W; Rao F; Ma E
    Science; 2019 Oct; 366(6462):210-215. PubMed ID: 31439757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Memcomputing NP-complete problems in polynomial time using polynomial resources and collective states.
    Traversa FL; Ramella C; Bonani F; Di Ventra M
    Sci Adv; 2015 Jul; 1(6):e1500031. PubMed ID: 26601208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale Chemical Heterogeneity Ensures Unprecedently Low Resistance Drift in Cache-Type Phase-Change Memory Materials.
    Huang J; Chen B; Sha G; Gong H; Song T; Ding K; Rao F
    Nano Lett; 2023 Mar; 23(6):2362-2369. PubMed ID: 36861962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-level phase-change memory with ultralow power consumption and resistance drift.
    Liu B; Li K; Liu W; Zhou J; Wu L; Song Z; Elliott SR; Sun Z
    Sci Bull (Beijing); 2021 Nov; 66(21):2217-2224. PubMed ID: 36654113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppressing Structural Relaxation in Nanoscale Antimony to Enable Ultralow-Drift Phase-Change Memory Applications.
    Chen B; Wang XP; Jiao F; Ning L; Huang J; Xie J; Zhang S; Li XB; Rao F
    Adv Sci (Weinh); 2023 Sep; 10(25):e2301043. PubMed ID: 37377084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombinant protein-based nanoscale biomemory devices.
    Yagati AK; Min J; Choi JW
    J Nanosci Nanotechnol; 2014 Jan; 14(1):433-46. PubMed ID: 24730273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel nanocomposite-superlattices for low energy and high stability nanoscale phase-change memory.
    Wu X; Khan AI; Lee H; Hsu CF; Zhang H; Yu H; Roy N; Davydov AV; Takeuchi I; Bao X; Wong HP; Pop E
    Nat Commun; 2024 Jan; 15(1):13. PubMed ID: 38253559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Demonstration of Supervised Learning in Spiking Neural Networks with Phase-Change Memory Synapses.
    Nandakumar SR; Boybat I; Le Gallo M; Eleftheriou E; Sebastian A; Rajendran B
    Sci Rep; 2020 May; 10(1):8080. PubMed ID: 32415108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism and Impact of Bipolar Current Voltage Asymmetry in Computational Phase-Change Memory.
    Sarwat SG; Le Gallo M; Bruce RL; Brew K; Kersting B; Jonnalagadda VP; Ok I; Saulnier N; BrightSky M; Sebastian A
    Adv Mater; 2023 Sep; 35(37):e2201238. PubMed ID: 35570382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and Programming Algorithm of Phase Change Memory Cells for Analog In-Memory Computing.
    Antolini A; Franchi Scarselli E; Gnudi A; Carissimi M; Pasotti M; Romele P; Canegallo R
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33810489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimizing the Programming Power of Phase Change Memory by Using Graphene Nanoribbon Edge-Contact.
    Wang X; Song S; Wang H; Guo T; Xue Y; Wang R; Wang H; Chen L; Jiang C; Chen C; Shi Z; Wu T; Song W; Zhang S; Watanabe K; Taniguchi T; Song Z; Xie X
    Adv Sci (Weinh); 2022 Sep; 9(25):e2202222. PubMed ID: 36062987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental validation of state equations and dynamic route maps for phase change memristive devices.
    Marrone F; Secco J; Kersting B; Le Gallo M; Corinto F; Sebastian A; Chua LO
    Sci Rep; 2022 Apr; 12(1):6488. PubMed ID: 35443770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy Efficient Neuro-Inspired Phase-Change Memory Based on Ge
    Khan AI; Yu H; Zhang H; Goggin JR; Kwon H; Wu X; Perez C; Neilson KM; Asheghi M; Goodson KE; Vora PM; Davydov A; Takeuchi I; Pop E
    Adv Mater; 2023 Jul; 35(30):e2300107. PubMed ID: 36720651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-silicon nano-electronic device and its application in brain-inspired chips.
    Lv Y; Chen H; Wang Q; Li X; Xie C; Song Z
    Front Neurorobot; 2022; 16():948386. PubMed ID: 35966373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductive Bridge Random Access Memory (CBRAM): Challenges and Opportunities for Memory and Neuromorphic Computing Applications.
    Abbas H; Li J; Ang DS
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array.
    Eryilmaz SB; Kuzum D; Jeyasingh R; Kim S; BrightSky M; Lam C; Wong HS
    Front Neurosci; 2014; 8():205. PubMed ID: 25100936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the Data Reliability of Multilevel Storage in Phase Change Memory with 2T2R Cell Structure.
    Lv Y; Wang Q; Chen H; Xie C; Ni S; Li X; Song Z
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.