BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 26333387)

  • 21. Solution-Processed Cu(In, Ga)(S, Se)
    Xu L; Deng LL; Cao J; Wang X; Chen WY; Jiang Z
    Nanoscale Res Lett; 2017 Dec; 12(1):159. PubMed ID: 28249374
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hole-transporting small molecules based on thiophene cores for high efficiency perovskite solar cells.
    Li H; Fu K; Boix PP; Wong LH; Hagfeldt A; Grätzel M; Mhaisalkar SG; Grimsdale AC
    ChemSusChem; 2014 Dec; 7(12):3420-5. PubMed ID: 25233841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material.
    Jiang X; Yu Z; Zhang Y; Lai J; Li J; Gurzadyan GG; Yang X; Sun L
    Sci Rep; 2017 Feb; 7():42564. PubMed ID: 28211919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-Cost Carbazole-Based Hole-Transport Material for Highly Efficient Perovskite Solar Cells.
    Chen Z; Li H; Zheng X; Zhang Q; Li Z; Hao Y; Fang G
    ChemSusChem; 2017 Aug; 10(15):3111-3117. PubMed ID: 28653432
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved Performance and Reproducibility of Perovskite Solar Cells by Well-Soluble Tris(pentafluorophenyl)borane as a p-Type Dopant.
    Ye T; Wang J; Chen W; Yang Y; He D
    ACS Appl Mater Interfaces; 2017 May; 9(21):17923-17931. PubMed ID: 28485135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Additive-free, Cost-Effective Hole-Transporting Materials for Perovskite Solar Cells Based on Vinyl Triarylamines.
    Nishimura H; Okada I; Tanabe T; Nakamura T; Murdey R; Wakamiya A
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32994-33003. PubMed ID: 32583662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tetraphenylbutadiene-Based Symmetric 3D Hole-Transporting Materials for Perovskite Solar Cells: A Trial Trade-off between Charge Mobility and Film Morphology.
    Chen J; Xia J; Gao WJ; Yu HJ; Zhong JX; Jia C; Qin YS; She Z; Kuang DB; Shao G
    ACS Appl Mater Interfaces; 2020 May; 12(18):21088-21099. PubMed ID: 32252526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecularly engineered hole-transport material for low-cost perovskite solar cells.
    Pashaei B; Bellani S; Shahroosvand H; Bonaccorso F
    Chem Sci; 2020 Jan; 11(9):2429-2439. PubMed ID: 34084407
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hole-Transporting Materials for Printable Perovskite Solar Cells.
    Vivo P; Salunke JK; Priimagi A
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28914823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient perovskite solar cells with 13.63 % efficiency based on planar triphenylamine hole conductors.
    Choi H; Paek S; Lim N; Lee YH; Nazeeruddin MK; Ko J
    Chemistry; 2014 Aug; 20(35):10894-9. PubMed ID: 25100664
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Defect Passivation by Amide-Based Hole-Transporting Interfacial Layer Enhanced Perovskite Grain Growth for Efficient p-i-n Perovskite Solar Cells.
    Wang SY; Chen CP; Chung CL; Hsu CW; Hsu HL; Wu TH; Zhuang JY; Chang CJ; Chen HM; Chang YJ
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40050-40061. PubMed ID: 31596062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular "Flower" as the High-Mobility Hole-Transport Material for Perovskite Solar Cells.
    Kou C; Feng S; Li H; Li W; Li D; Meng Q; Bo Z
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43855-43860. PubMed ID: 29182245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel Carbazole-Based Hole-Transporting Materials with Star-Shaped Chemical Structures for Perovskite-Sensitized Solar Cells.
    Kang MS; Sung SD; Choi IT; Kim H; Hong M; Kim J; Lee WI; Kim HK
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22213-7. PubMed ID: 26352372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbazole-Based Spiro[fluorene-9,9'-xanthene] as an Efficient Hole-Transporting Material for Perovskite Solar Cells.
    Lee DY; Sivakumar G; Manju ; Misra R; Seok SI
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28246-28252. PubMed ID: 32476415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dopant-Free Donor (D)-π-D-π-D Conjugated Hole-Transport Materials for Efficient and Stable Perovskite Solar Cells.
    Zhang F; Liu X; Yi C; Bi D; Luo J; Wang S; Li X; Xiao Y; Zakeeruddin SM; Grätzel M
    ChemSusChem; 2016 Sep; 9(18):2578-2585. PubMed ID: 27560603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strategy to Boost the Efficiency of Mixed-Ion Perovskite Solar Cells: Changing Geometry of the Hole Transporting Material.
    Zhang J; Xu B; Johansson MB; Vlachopoulos N; Boschloo G; Sun L; Johansson EM; Hagfeldt A
    ACS Nano; 2016 Jul; 10(7):6816-25. PubMed ID: 27304078
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exclusion of metal oxide by an RF sputtered Ti layer in flexible perovskite solar cells: energetic interface between a Ti layer and an organic charge transporting layer.
    Ameen S; Akhtar MS; Seo HK; Nazeeruddin MK; Shin HS
    Dalton Trans; 2015 Apr; 44(14):6439-48. PubMed ID: 25747794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lead-Free Perovskite Homojunction-Based HTM-Free Perovskite Solar Cells: Theoretical and Experimental Viewpoints.
    Sajid S; Alzahmi S; Salem IB; Park J; Obaidat IM
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985875
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient inorganic solid solar cells composed of perovskite and PbS quantum dots.
    Li Y; Zhu J; Huang Y; Wei J; Liu F; Shao Z; Hu L; Chen S; Yang S; Tang J; Yao J; Dai S
    Nanoscale; 2015 Jun; 7(21):9902-7. PubMed ID: 25966784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct C-H Arylation Meets Perovskite Solar Cells: Tin-Free Synthesis Shortcut to High-Performance Hole-Transporting Materials.
    Chang YC; Lee KM; Lai CH; Liu CY
    Chem Asian J; 2018 Jun; 13(11):1510-1515. PubMed ID: 29603676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.