BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 26333406)

  • 21. Comparison of liquid chromatography-tandem mass spectrometry-based targeted proteomics and conventional analytical methods for the determination of P-glycoprotein in human breast cancer cells.
    Yang T; Xu F; Xu J; Fang D; Yu Y; Chen Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Oct; 936():18-24. PubMed ID: 23968647
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analyzing Cerebrospinal Fluid Proteomes to Characterize Central Nervous System Disorders: A Highly Automated Mass Spectrometry-Based Pipeline for Biomarker Discovery.
    Núñez Galindo A; Macron C; Cominetti O; Dayon L
    Methods Mol Biol; 2019; 1959():89-112. PubMed ID: 30852817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteomic profiling of human islets collected from frozen pancreata using laser capture microdissection.
    Zhang L; Lanzoni G; Battarra M; Inverardi L; Zhang Q
    J Proteomics; 2017 Jan; 150():149-159. PubMed ID: 27620696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis.
    Bouchal P; Roumeliotis T; Hrstka R; Nenutil R; Vojtesek B; Garbis SD
    J Proteome Res; 2009 Jan; 8(1):362-73. PubMed ID: 19053527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SILAC-Based Comparative Proteomic Analysis of Lysosomes from Mammalian Cells Using LC-MS/MS.
    Thelen M; Winter D; Braulke T; Gieselmann V
    Methods Mol Biol; 2017; 1594():1-18. PubMed ID: 28456973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomarker verification using selected reaction monitoring and shotgun proteomics.
    Castro-Gamero AM; Izumi C; Rosa JC
    Methods Mol Biol; 2014; 1156():295-306. PubMed ID: 24791997
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mass Spectrometry Imaging, Laser Capture Microdissection, and LC-MS/MS of the Same Tissue Section.
    Dilillo M; Pellegrini D; Ait-Belkacem R; de Graaf EL; Caleo M; McDonnell LA
    J Proteome Res; 2017 Aug; 16(8):2993-3001. PubMed ID: 28648079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-throughput proteomics and AI for cancer biomarker discovery.
    Xiao Q; Zhang F; Xu L; Yue L; Kon OL; Zhu Y; Guo T
    Adv Drug Deliv Rev; 2021 Sep; 176():113844. PubMed ID: 34182017
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoproteomics comes of age.
    Zhu Y; Piehowski PD; Kelly RT; Qian WJ
    Expert Rev Proteomics; 2018 Nov; 15(11):865-871. PubMed ID: 30375896
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Connecting Brain Proteomics with Behavioural Neuroscience in Translational Animal Models of Neuropsychiatric Disorders.
    Sarnyai Z; Guest PC
    Adv Exp Med Biol; 2017; 974():97-114. PubMed ID: 28353227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional genomics and proteomics in the clinical neurosciences: data mining and bioinformatics.
    Phan JH; Quo CF; Wang MD
    Prog Brain Res; 2006; 158():83-108. PubMed ID: 17027692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and proteomic activity evaluation of a new isotope-coded affinity tagging (ICAT) reagent.
    Guaragna A; Amoresano A; Pinto V; Monti G; Mastrobuoni G; Marino G; Palumbo G
    Bioconjug Chem; 2008 May; 19(5):1095-104. PubMed ID: 18407682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of a quantitative cysteinyl-peptide enrichment technology for high-throughput quantitative proteomics.
    Liu T; Qian WJ; Camp DG; Smith RD
    Methods Mol Biol; 2007; 359():107-24. PubMed ID: 17484113
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploiting the multiplexing capabilities of tandem mass tags for high-throughput estimation of cellular protein abundances by mass spectrometry.
    Ahrné E; Martinez-Segura A; Syed AP; Vina-Vilaseca A; Gruber AJ; Marguerat S; Schmidt A
    Methods; 2015 Sep; 85():100-107. PubMed ID: 25952948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteomic analysis reveals differentially secreted proteins in the urine from patients with clear cell renal cell carcinoma.
    Sandim V; Pereira Dde A; Kalume DE; Oliveira-Carvalho AL; Ornellas AA; Soares MR; Alves G; Zingali RB
    Urol Oncol; 2016 Jan; 34(1):5.e11-25. PubMed ID: 26420021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stable isotope dimethyl labelling for quantitative proteomics and beyond.
    Hsu JL; Chen SH
    Philos Trans A Math Phys Eng Sci; 2016 Oct; 374(2079):. PubMed ID: 27644970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Laser capture microdissection and its practical applications].
    Lužná P; Ehrmann J
    Cesk Patol; 2013 Oct; 49(4):123-5. PubMed ID: 24289481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Absolute quantitation of protein posttranslational modification isoform.
    Yang Z; Li N
    Methods Mol Biol; 2015; 1306():105-19. PubMed ID: 25930697
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of proteomics in dementia and Alzheimer's disease.
    Zellner M; Veitinger M; Umlauf E
    Acta Neuropathol; 2009 Jul; 118(1):181-95. PubMed ID: 19259691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The future of LC-MS for pharmaceutical analysis: an interview with Jun Qu.
    Qu J
    Bioanalysis; 2018 Mar; 10(6):375-376. PubMed ID: 29451391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.